| | Journal of Applied Mathematics and Mechanics Russian Academy of Sciences | | Founded
in January 1936
(Translated from 1958)
Issued 6 times a year
ISSN 0021-8928 (print version) |
Archive of Issues
Total articles in the database: | | 10512 |
In Russian (ΟΜΜ): | | 9713
|
In English (J. Appl. Math. Mech.): | | 799 |
|
<< Previous article | Volume 73, Issue 1 / 2009 | Next article >> |
S.V. Kuznetsov, "Soliton-like lamb waves," J. Appl. Math. Mech. 73 (1), 71-76 (2009) |
Year |
2009 |
Volume |
73 |
Issue |
1 |
Pages |
71-76 |
Title |
Soliton-like lamb waves |
Author(s) |
S.V. Kuznetsov (Moscow, Russia, kuzn-sergey@yandex.ru) |
Abstract |
The velocity and polarization of acoustic Lamb waves, propagating in the directions of elastic symmetry of single-layer and double-layer anisotropic media at vanishingly low frequencies (soliton-like waves), are investigated. The method of fundamental matrices is used to construct solutions. The conditions for soliton-like Lamb waves to exist are analysed. |
References |
1. | Russell J. Scott Report on waves. 14th Meeting British Assoc. Advance. Sci., York 1844 (London 1845). p. 311390. |
2. | A.D.D. Craik, The origins of water wave theory, Ann Rev Fluid Mech 36 (2004), pp. 128. |
3. | D.J. Korteweg and G. de Vries, On the change of form of long wave advancing in a rectangular canal, and on a new type of long stationary waves, Phil Mag 5 (39) (1895), pp. 422443. |
4. | P. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm Pure Appl Math 21 (5) (1968), pp. 467490. |
5. | J.W. Miles, The Korteweg-de Vries equation, a historical essay, J Fluid Mech 106 (1981), pp. 131147. |
6. | M. Planat and M. Hoummady, Observation of solution-like envelope modulations generated in a anisotropic quartz plate by metallic interdigital transducers, Appl Phys Lett 55 (2) (1989), pp. 103105. |
7. | R.M. Davies, A critical study of the Hopkinson pressure bar, Phill Trans Roy Soc London Ser A 240 (821) (1948), pp. 375457. |
8. | R.D. Mindlin and H.D. McNiven, Axially symmetric waves in elastic rods, Trans ASME Ser E J Appl Mech 27 (1) (1960), pp. 145151. |
9. | M. Onoe, H.D. McNiven and R.D. Mindlin, Dispersion of axially symmetric waves in elastic rods, Trans ASME Ser E J Appl Mech 29 (4) (1962), pp. 729734. |
10. | K.F. Graff, Wave Motion in Elastic Solids, Clarendon Press, Oxford (1975) 649p. |
11. | T. Kawahara, Oscillatory solitary waves in dispersive media, J Phys Soc Japan 33 (1) (1972), pp. 260264. |
12. | Mp.P. Soerensen, P.L. Christiansen and P.S. Lomdahl, Solitary waves on nonlinear elastic rods. I, J Acoust Soc America 76 (3) (1984), pp. 871879. |
13. | I.V. Porubov, A.M. Samsonov, M.G. Velarde and A.V. Bukhanovsky, Strain solitary waves in an elastic rod embedded in another elastic external medium with sliding, Phys Rev Ser E 58 (3) (1998), pp. 38543864. |
14. | H. Lamb, On waves in an elastic plate, Proc Roy Soc London Ser A 93 (648) (1917), pp. 114128. |
15. | S.V. Kuznetsov, Subsonic Lamb waves in anisotropic plates, Quart Appl Math 60 (3) (2002), pp. 577587. |
16. | W.T. Thomson, Transmission of elastic waves through a stratified solid medium, J Appl Phys 21 (2) (1950), pp. 8993. |
17. | N.A. Haskell, Dispersion of surface waves on multilayered media, Bull Seismol Soc America 43 (1) (1953), pp. 1734. |
18. | L. Knopoff, A matrix method for elastic wave problems, Bull Seismol Soc America 54 (1) (1964), pp. 431438. |
19. | A.K. Mal and L. Knopoff, A differential equation for surface waves in layers with varying thickness, J Math Anal Appl 21 (2) (1968), pp. 431444. |
20. | S.V. Kuznetsov, Surface waves of non-Rayleigh type, Quart Appl Math 61 (3) (2003), pp. 575582. |
21. | C.D. Meyer and Matrix Analysis, Applied Linear Algebra, SIAM, Philadelphia (2002) 710p. |
|
Received |
25 January 2008 |
Link to Fulltext |
|
<< Previous article | Volume 73, Issue 1 / 2009 | Next article >> |
|
If you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter
|
|