Journal of Applied Mathematics and Mechanics (about journal) Journal of Applied
Mathematics and Mechanics

Russian Academy of Sciences
 Founded
in January 1936
(Translated from 1958)
Issued 6 times a year
ISSN 0021-8928
(print version)

Russian Russian English English About Journal | Issues | Editorial Board | Contact Us
 


IssuesArchive of Issues2009-1pp.71-76

Archive of Issues

Total articles in the database: 10512
In Russian (ΟΜΜ): 9713
In English (J. Appl. Math. Mech.): 799

<< Previous article | Volume 73, Issue 1 / 2009 | Next article >>
S.V. Kuznetsov, "Soliton-like lamb waves," J. Appl. Math. Mech. 73 (1), 71-76 (2009)
Year 2009 Volume 73 Issue 1 Pages 71-76
Title Soliton-like lamb waves
Author(s) S.V. Kuznetsov (Moscow, Russia, kuzn-sergey@yandex.ru)
Abstract The velocity and polarization of acoustic Lamb waves, propagating in the directions of elastic symmetry of single-layer and double-layer anisotropic media at vanishingly low frequencies (soliton-like waves), are investigated. The method of fundamental matrices is used to construct solutions. The conditions for soliton-like Lamb waves to exist are analysed.
References
1.  Russell J. Scott Report on waves. 14th Meeting British Assoc. Advance. Sci., York 1844 (London 1845). p. 311–390.
2.  A.D.D. Craik, The origins of water wave theory, Ann Rev Fluid Mech 36 (2004), pp. 1–28.
3.  D.J. Korteweg and G. de Vries, On the change of form of long wave advancing in a rectangular canal, and on a new type of long stationary waves, Phil Mag 5 (39) (1895), pp. 422–443.
4.  P. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm Pure Appl Math 21 (5) (1968), pp. 467–490.
5.  J.W. Miles, The Korteweg-de Vries equation, a historical essay, J Fluid Mech 106 (1981), pp. 131–147.
6.  M. Planat and M. Hoummady, Observation of solution-like envelope modulations generated in a anisotropic quartz plate by metallic interdigital transducers, Appl Phys Lett 55 (2) (1989), pp. 103–105.
7.  R.M. Davies, A critical study of the Hopkinson pressure bar, Phill Trans Roy Soc London Ser A 240 (821) (1948), pp. 375–457.
8.  R.D. Mindlin and H.D. McNiven, Axially symmetric waves in elastic rods, Trans ASME Ser E J Appl Mech 27 (1) (1960), pp. 145–151.
9.  M. Onoe, H.D. McNiven and R.D. Mindlin, Dispersion of axially symmetric waves in elastic rods, Trans ASME Ser E J Appl Mech 29 (4) (1962), pp. 729–734.
10.  K.F. Graff, Wave Motion in Elastic Solids, Clarendon Press, Oxford (1975) 649p.
11.  T. Kawahara, Oscillatory solitary waves in dispersive media, J Phys Soc Japan 33 (1) (1972), pp. 260–264.
12.  Mp.P. Soerensen, P.L. Christiansen and P.S. Lomdahl, Solitary waves on nonlinear elastic rods. I, J Acoust Soc America 76 (3) (1984), pp. 871–879.
13.  I.V. Porubov, A.M. Samsonov, M.G. Velarde and A.V. Bukhanovsky, Strain solitary waves in an elastic rod embedded in another elastic external medium with sliding, Phys Rev Ser E 58 (3) (1998), pp. 3854–3864.
14.  H. Lamb, On waves in an elastic plate, Proc Roy Soc London Ser A 93 (648) (1917), pp. 114–128.
15.  S.V. Kuznetsov, Subsonic Lamb waves in anisotropic plates, Quart Appl Math 60 (3) (2002), pp. 577–587.
16.  W.T. Thomson, Transmission of elastic waves through a stratified solid medium, J Appl Phys 21 (2) (1950), pp. 89–93.
17.  N.A. Haskell, Dispersion of surface waves on multilayered media, Bull Seismol Soc America 43 (1) (1953), pp. 17–34.
18.  L. Knopoff, A matrix method for elastic wave problems, Bull Seismol Soc America 54 (1) (1964), pp. 431–438.
19.  A.K. Mal and L. Knopoff, A differential equation for surface waves in layers with varying thickness, J Math Anal Appl 21 (2) (1968), pp. 431–444.
20.  S.V. Kuznetsov, Surface waves of non-Rayleigh type, Quart Appl Math 61 (3) (2003), pp. 575–582.
21.  C.D. Meyer and Matrix Analysis, Applied Linear Algebra, SIAM, Philadelphia (2002) 710p.
Received 25 January 2008
Link to Fulltext
<< Previous article | Volume 73, Issue 1 / 2009 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 245, 119526 Moscow, Russia (+7 495) 434-2149 pmm@ipmnet.ru pmmedit@ipmnet.ru https://pmm.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Journal of Applied Mathematics and Mechanics
webmaster
Rambler's Top100