1. | Knowles J.К., Sternberg E. On a class of conservation laws in linearized and finite elastostatics // Arch. Ration. Mech. and Analysis. 1972. V.44. № 3. P. 187-211. |
2. | Budiansky В., Rice J.R. Conservation laws and energy-release rates // Trans. ASME. J. Appl. Mech. 1973. V. 40. № 1. P. 201-203. |
3. | Chen F.H.K., Shield R.T. Conservation laws in elasticity of the J-integral type //ZAMP 1977. V. 28. № l.P. 1-22. |
4. | Yau J.F., Wang S.S., Corten H.T. A mixed-mode crack analysis of isotropic solids using consrevation laws of elasticity // Trans. ASME. J. Appl. Mech. 1980. V. 47. № 2. P. 335-341. |
5. | Kfouri A.P. Some evaluations of the elastic T-term using Eshelby's method // Intern. J. Fracture. 1986. V. 30. № 4. P. 301-315. |
6. | Choi N.Y., Earmme Y.Y. Evaluation of stress intensity factors in cricular arc-shaped interfacial crack using L-integral // Mech. Materials. 1992. V. 14. № 2. P. 141-153. |
7. | Im S., Kim K.-S. An application of two-state M-integral for computing the intensity of the singular near-tip field for a generic composite wedge // J. Mech. and Phys. Solids. 2000. V. 48. № l.P. 129-151. |
8. | Kim Y.J., Kim H.-G., Im S. Mode decomposition of three-dimensional mixed-mode cracks via two-state integrals // Intern. J. Solids and Structures. 2001. V. 38. № 36-37. P. 6405-6426. |
9. | Stern M., Becker E.B., Dunham R.S. A contour integral computation of mixed-mode stress intensity factors // Intern. J. Fracture. 1976. V. 12. № 3. P. 359-368. |
10. | Hong C.C., Stern M. The computation of stress intensity factors in dissimular materials // J. Elasticity. 1978. V. 8. № l.P. 21-30. |
11. | Andrieux S., Ben Abda A., Bui H.D. Reciprocity principle and crack identification // Inverse Problems. 1999. V. 15. № 1. P. 59-65. |
12. | Goldstein R., Shifrin E., Shushpannikov P. Application of invariant integrals to the problems of defect indentification // Intern. J. Fracture. 2007. V. 147. № 1-4. P. 45-54. |
13. | Goldstein R., Shifrin E., Shushpannikov P. Application of invariant integrals to elastostatic inverse problems // C. r. Acad. Sci. Ser. Mecanique. 2008. V. 336. № 1-2. P. 108-117. |
14. | Капцов А.В., Шифрин Е.И. Идентификация плоской трещины в упругом теле с помощью инвариантных интегралов // Изв. РАН. МТТ. 2008. № 3. С. 145-163. |
15. | Chen Y.Z. New path independent integrals in linear elastic fracture mechanics // Engng Fract. Mech. 1985. V. 22. № 4. P. 673-686. |
16. | Chen Y., Ma L. Bueckner's work conjugate integrals and weight functions for a crack in anisotropic solids // Acta Mech. Sinica (English series). 2000. V. 16. № 3. P. 240-253. |
17. | Chen Y.-H., Lu T.J. Recent developments and applications of invariant integrals // Appl. Mech. Rev. 2003. V. 56. № 5. P. 515-552. |
18. | Кудрявцев Л Д. Курс математического анализа. Т. 2. М: Высш. шк., 1981. 584 с. |
19. | Аннин Б.Д., Бытев В.О., Сенатов С.И. Групповые свойства уравнений упругости и пластичности. Новосибирск: Наука, 1985. 142 с. |