Journal of Applied Mathematics and Mechanics (about journal) Journal of Applied
Mathematics and Mechanics

Russian Academy of Sciences
 Founded
in January 1936
(Translated from 1958)
Issued 6 times a year
ISSN 0021-8928
(print version)

Russian Russian English English About Journal | Issues | Editorial Board | Contact Us
 


IssuesArchive of Issues2014-1pp.84-98

Archive of Issues

Total articles in the database: 10512
In Russian (ΟΜΜ): 9713
In English (J. Appl. Math. Mech.): 799

<< Previous article | Volume 78, Issue 1 / 2014 | Next article >>
V.N. Paimushin, "Contact formulation of non-linear problems in the mechanics of shells with their end sections connected by a plane curvilinear rod," J. Appl. Math. Mech. 78 (1), 84-98 (2014)
Year 2014 Volume 78 Issue 1 Pages 84-98
Title Contact formulation of non-linear problems in the mechanics of shells with their end sections connected by a plane curvilinear rod
Author(s) V.N. Paimushin (Kazan, Russia, dsm@dsm.kstu-kai.ru, vpajmushin@mail.ru)
Abstract Starting from the consistent version of the geometrically non-linear equations of the theory of elasticity for small deformations and arbitrary displacements, a Timoshenko-type model that takes account of shear and compression deformations and also an extended variational Lagrange principle, an improved geometrically non-linear theory of static deformation is constructed for reinforced thin-walled structures with shell elements, the end sections of which are connected by a rod. It is based on the introduction into the treatment of contact forces and torques as unknowns on the lines joining the shells to the rods and it enables all classical and non-classical forms of loss of stability in structures of the class considered to be investigated. An analytical solution of the problem of the stability of a rectangular plate, that is under compression in one direction, supported by a hinge along two opposite edges and joined by a hinge with an elastic rod on one of the other two edges, is found using a simplified version of the linearized equations.
Received 27 July 2012
Link to Fulltext
<< Previous article | Volume 78, Issue 1 / 2014 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 245, 119526 Moscow, Russia (+7 495) 434-2149 pmm@ipmnet.ru pmmedit@ipmnet.ru https://pmm.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Journal of Applied Mathematics and Mechanics
webmaster
Rambler's Top100