Journal of Applied Mathematics and Mechanics (about journal) Journal of Applied
Mathematics and Mechanics

Russian Academy of Sciences
 Founded
in January 1936
(Translated from 1958)
Issued 6 times a year
ISSN 0021-8928
(print version)

Russian Russian English English About Journal | Issues | Editorial Board | Contact Us
 


IssuesArchive of Issues2014-3pp.249-257

Archive of Issues

Total articles in the database: 10482
In Russian (ΟΜΜ): 9683
In English (J. Appl. Math. Mech.): 799

<< Previous article | Volume 78, Issue 3 / 2014 | Next article >>
S.A. Gutnik and V.A. Sarychev, "Dynamics of an axisymmetric gyrostat satellite. Equilibrium positions and their stability," J. Appl. Math. Mech. 78 (3), 249-257 (2014)
Year 2014 Volume 78 Issue 3 Pages 249-257
Title Dynamics of an axisymmetric gyrostat satellite. Equilibrium positions and their stability
Author(s) S.A. Gutnik (Moscow, Russia, s.gutnik@inno.mgimo.ru)
V.A. Sarychev (Moscow, Russia)
Abstract The dynamics of an axisymmetric gyrostat satellite in a circular orbit in the central Newtonian force field is investigated. All the equilibrium positions of the gyrostat satellite in the orbital system of coordinates are determined, and the conditions for their existence are analysed. All the bifurcation values of the system parameters at which the number of equilibrium positions changes are found. It is shown that, depending on the values of the parameters of the problem, the number of equilibrium positions of a gyrostat satellite can be 8, 12 or 16. The evolution of regions where the sufficient conditions for stability of the equilibrium positions hold is investigated.
Received 10 January 2013
Link to Fulltext
<< Previous article | Volume 78, Issue 3 / 2014 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 245, 119526 Moscow, Russia (+7 495) 434-2149 pmm@ipmnet.ru pmmedit@ipmnet.ru https://pmm.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Journal of Applied Mathematics and Mechanics
webmaster
Rambler's Top100