| | Journal of Applied Mathematics and Mechanics Russian Academy of Sciences | | Founded
in January 1936
(Translated from 1958)
Issued 6 times a year
ISSN 0021-8928 (print version) |
Archive of Issues
Total articles in the database: | | 10512 |
In Russian (ΟΜΜ): | | 9713
|
In English (J. Appl. Math. Mech.): | | 799 |
|
<< Previous article | Volume 78, Issue 2 / 2014 | Next article >> |
V.I. Gorbachev, "Integral formulae in the coupled problem of the thermoelasticity of an inhomogeneous body. Application in the mechanics of composite materials," J. Appl. Math. Mech. 78 (2), 192-208 (2014) |
Year |
2014 |
Volume |
78 |
Issue |
2 |
Pages |
192-208 |
Title |
Integral formulae in the coupled problem of the thermoelasticity of an inhomogeneous body. Application in the mechanics of composite materials |
Author(s) |
V.I. Gorbachev (Moscow, Russia, vigorby@mail.ru) |
Abstract |
A coupled unsteady problem of thermoelasticity for an inhomogeneous body, described by a system of four second-order partial differential equations with coefficients that vary depending on the coordinates, is considered, and the same problem for a homogeneous body of the same shape (the concomitant problem) is examined together with this original problem. Integral formulae are obtained that allow one to express the displacements and temperature in the original problem in terms of the displacements and temperature in the concomitant problem. Integral formulae are used to represent the solution of the original problem in the form of series over all possible derivatives of the solution of the concomitant problem. A system of recurrence problems is written for the coefficients of these series. Expressions are found for the coefficients of the concomitant problem (effective coefficients) and special boundary value problems are formulated, from the solution of which specific expressions are found for the effective thermoelasticity coefficients. A theorem concerning the fact that the effective coefficients satisfy the physicomechanical constraints imposed on the thermoelastic constants of real bodies is proved. The case of a layer that is inhomogeneous in its thickness is considered and explicit analytical expressions for all the thermoelasticity coefficients are obtained for it. The case when the thermoelasticity coefficients depend periodically on the coordinates is examined in detail. |
Received |
10 June 2013 |
Link to Fulltext |
|
<< Previous article | Volume 78, Issue 2 / 2014 | Next article >> |
|
If you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter
|
|