| | Journal of Applied Mathematics and Mechanics Russian Academy of Sciences | | Founded
in January 1936
(Translated from 1958)
Issued 6 times a year
ISSN 0021-8928 (print version) |
Archive of Issues
Total articles in the database: | | 10512 |
In Russian (ΟΜΜ): | | 9713
|
In English (J. Appl. Math. Mech.): | | 799 |
|
<< Previous article | Volume 77, Issue 2 / 2013 | Next article >> |
V.S. Sergeev, "Limit periodic motions in some systems with aftereffect under resonance condition," J. Appl. Math. Mech. 77 (2), 159-166 (2013) |
Year |
2013 |
Volume |
77 |
Issue |
2 |
Pages |
159-166 |
Title |
Limit periodic motions in some systems with aftereffect under resonance condition |
Author(s) |
V.S. Sergeev (Moscow, Russia, vsergeev@ccac.ru) |
Abstract |
Volterra-type integrodifferential equations and their solutions are considered which, when the time increases without limit, exponentially tend to periodic modes. In the critical case of stability, when the characteristic equation has a pair of pure imaginary roots and the remaining roots have negative real parts, the problem of the existence of limit periodic solutions with resonance, caused by coincidence between the periodic part of the limit external periodic perturbation and the natural frequency of the linearized system, is solved. It is shown that, if the right-hand side of the equation is an analytic function and the existence of limit periodic solutions is determined by terms of the (2m+1)-th order, these solutions are represented by power series in the arbitrary initial values of the non-critical variables and the parameter μ1/(2m+1), where μ is a small parameter, characterizing the magnitude of the maximum external periodic perturbation. The amplitude equations are presented. |
Received |
27 April 2012 |
Link to Fulltext |
|
<< Previous article | Volume 77, Issue 2 / 2013 | Next article >> |
|
If you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter
|
|