Journal of Applied Mathematics and Mechanics (about journal) Journal of Applied
Mathematics and Mechanics

Russian Academy of Sciences
 Founded
in January 1936
(Translated from 1958)
Issued 6 times a year
ISSN 0021-8928
(print version)

Russian Russian English English About Journal | Issues | Editorial Board | Contact Us
 


IssuesArchive of Issues2013-2pp.245-255

Archive of Issues

Total articles in the database: 10512
In Russian (ΟΜΜ): 9713
In English (J. Appl. Math. Mech.): 799

<< Previous article | Volume 77, Issue 2 / 2013 | Next article >>
I.A. Soldatenkov, "The periodic contact problem of the plane theory of elasticity. Taking friction, wear and adhesion into account," J. Appl. Math. Mech. 77 (2), 245-255 (2013)
Year 2013 Volume 77 Issue 2 Pages 245-255
Title The periodic contact problem of the plane theory of elasticity. Taking friction, wear and adhesion into account
Author(s) I.A. Soldatenkov (Moscow, Russia, isoldat@mail.ru)
Abstract A solution of the plane problem of the contact interaction of a periodic system of convex punches with an elastic half-plane is given for two forms of boundary conditions: 1) sliding of the punches when there is friction and wear, and 2) the indentation of the punches when there is adhesion. The problem is reduced to a canonical singular integral equation on the arc of a circle in the complex plane. The solution of this equation is expressed in terms of simple algebraic functions of a complex variable, which considerably simplifies its analysis. Asymptotic expressions are obtained for the solution of the problem in the case when the size of the contact area is small compared with the distance between the punches.
Received 29 May 2011
Link to Fulltext
<< Previous article | Volume 77, Issue 2 / 2013 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 245, 119526 Moscow, Russia (+7 495) 434-2149 pmm@ipmnet.ru pmmedit@ipmnet.ru https://pmm.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Journal of Applied Mathematics and Mechanics
webmaster
Rambler's Top100