Journal of Applied Mathematics and Mechanics (about journal) Journal of Applied
Mathematics and Mechanics

Russian Academy of Sciences
 Founded
in January 1936
(Translated from 1958)
Issued 6 times a year
ISSN 0021-8928
(print version)

Russian Russian English English About Journal | Issues | Editorial Board | Contact Us
 


IssuesArchive of Issues2010-6pp.710-720

Archive of Issues

Total articles in the database: 10522
In Russian (ΟΜΜ): 9723
In English (J. Appl. Math. Mech.): 799

<< Previous article | Volume 74, Issue 6 / 2010 | Next article >>
A.A. Rogovoi and O.S. Stolbova, "A stress recovery procedure for solving geometrically non-linear problems in the mechanics of a deformable solid by the finite element method," J. Appl. Math. Mech. 74 (6), 710-720 (2010)
Year 2010 Volume 74 Issue 6 Pages 710-720
Title A stress recovery procedure for solving geometrically non-linear problems in the mechanics of a deformable solid by the finite element method
Author(s) A.A. Rogovoi (Perm, Russia, rogovoy@icmm.ru)
O.S. Stolbova (Perm, Russia)
Abstract A stress recovery procedure is presented for non-linear and linearized problems, based on the determination of the forces at the mesh points using a stiffness matrix obtained by the finite element method for the Lagrange variational equation written in the initial configuration using an asymmetric Piola-Kirchhoff stress tensor. Vectors of the forces reduced to the mesh points are constructed using the displacements at the mesh points found by solving this equation and for the known stiffness matrices of the elements. On the other hand, these forces at the mesh points are defined in terms of unknown forces distributed over the surface of an element and given shape functions. As a result, a system of Fredholm integral equations of the first kind is obtained, the solution of which gives these distributed forces. The values of the Piola-Kirchhoff stress tensor of the first kind at the mesh points are determined using the values found for the distributed forces on the surfaces of the finite element mesh (including at the mesh points) using the Cauchy relations for the initial configuration. The linearized representation of this tensor enables all the derivatives of the increment in the strain vector with respect to the coordinates to be found without invoking the operation of differentiation. The particular features of the use of the stress recovery procedure are demonstrated for a plane problem in the non-linear theory of elasticity.
Received 30 March 2010
Link to Fulltext
<< Previous article | Volume 74, Issue 6 / 2010 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 245, 119526 Moscow, Russia (+7 495) 434-2149 pmm@ipmnet.ru pmmedit@ipmnet.ru https://pmm.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Journal of Applied Mathematics and Mechanics
webmaster
Rambler's Top100