| | Journal of Applied Mathematics and Mechanics Russian Academy of Sciences | | Founded
in January 1936
(Translated from 1958)
Issued 6 times a year
ISSN 0021-8928 (print version) |
Archive of Issues
Total articles in the database: | | 10512 |
In Russian (ΟΜΜ): | | 9713
|
In English (J. Appl. Math. Mech.): | | 799 |
|
<< Previous article | Volume 74, Issue 6 / 2010 | Next article >> |
L.M. Zubov, "The linear theory of dislocations and disclinations in elastic shells," J. Appl. Math. Mech. 74 (6), 663-672 (2010) |
Year |
2010 |
Volume |
74 |
Issue |
6 |
Pages |
663-672 |
Title |
The linear theory of dislocations and disclinations in elastic shells |
Author(s) |
L.M. Zubov (Rostov-on-Don, Russia, zubovl@yandex.ru) |
Abstract |
A stress state of a thin linearly elastic shell containing both isolated as well as continuously distributed dislocations and disclinations is considered using the classical Kirchhoff-Love model. A variational formulation of the problem of the equilibrium of both a multiply connected shell with Volterra dislocations as well as shells containing dislocations and disclinations distributed with a known density is given. The mathematical equivalence between the boundary-value problem of the stress state of a shell caused by distributed dislocations and disclinations and the boundary-value problem of the equilibrium of a shell under the action of specified distributed loads is established. A number of problems on dislocations and disclinations in a closed spherical shell is solved. The problem of infinitesimally deformations of a surface when there are distributed dislocations is formulated. |
Received |
01 March 2010 |
Link to Fulltext |
|
<< Previous article | Volume 74, Issue 6 / 2010 | Next article >> |
|
If you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter
|
|