Journal of Applied Mathematics and Mechanics (about journal) Journal of Applied
Mathematics and Mechanics

Russian Academy of Sciences
 Founded
in January 1936
(Translated from 1958)
Issued 6 times a year
ISSN 0021-8928
(print version)

Russian Russian English English About Journal | Issues | Editorial Board | Contact Us
 


IssuesArchive of Issues2010-6pp.663-672

Archive of Issues

Total articles in the database: 10522
In Russian (ΟΜΜ): 9723
In English (J. Appl. Math. Mech.): 799

<< Previous article | Volume 74, Issue 6 / 2010 | Next article >>
L.M. Zubov, "The linear theory of dislocations and disclinations in elastic shells," J. Appl. Math. Mech. 74 (6), 663-672 (2010)
Year 2010 Volume 74 Issue 6 Pages 663-672
Title The linear theory of dislocations and disclinations in elastic shells
Author(s) L.M. Zubov (Rostov-on-Don, Russia, zubovl@yandex.ru)
Abstract A stress state of a thin linearly elastic shell containing both isolated as well as continuously distributed dislocations and disclinations is considered using the classical Kirchhoff-Love model. A variational formulation of the problem of the equilibrium of both a multiply connected shell with Volterra dislocations as well as shells containing dislocations and disclinations distributed with a known density is given. The mathematical equivalence between the boundary-value problem of the stress state of a shell caused by distributed dislocations and disclinations and the boundary-value problem of the equilibrium of a shell under the action of specified distributed loads is established. A number of problems on dislocations and disclinations in a closed spherical shell is solved. The problem of infinitesimally deformations of a surface when there are distributed dislocations is formulated.
Received 01 March 2010
Link to Fulltext
<< Previous article | Volume 74, Issue 6 / 2010 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 245, 119526 Moscow, Russia (+7 495) 434-2149 pmm@ipmnet.ru pmmedit@ipmnet.ru https://pmm.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Journal of Applied Mathematics and Mechanics
webmaster
Rambler's Top100