Journal of Applied Mathematics and Mechanics (about journal) Journal of Applied
Mathematics and Mechanics

Russian Academy of Sciences
 Founded
in January 1936
(Translated from 1958)
Issued 6 times a year
ISSN 0021-8928
(print version)

Russian Russian English English About Journal | Issues | Editorial Board | Contact Us
 


IssuesArchive of Issues2009-3pp.249-258

Archive of Issues

Total articles in the database: 10522
In Russian (ΟΜΜ): 9723
In English (J. Appl. Math. Mech.): 799

<< Previous article | Volume 73, Issue 3 / 2009 | Next article >>
B.S. Bardin and A.M. Chekin, "Non-linear oscillations of a Hamiltonian system in the case of 3:1 resonance," J. Appl. Math. Mech. 73 (3), 249-258 (2009)
Year 2009 Volume 73 Issue 3 Pages 249-258
Title Non-linear oscillations of a Hamiltonian system in the case of 3:1 resonance
Author(s) B.S. Bardin (Moscow, Russia, bsbardin@yandex.ru)
A.M. Chekin (Moscow, Russia)
Abstract The motion of an autonomous Hamiltonian system with two degrees of freedom near its equilibrium position is considered. It is assumed that, in a certain region of the equilibrium position, the Hamiltonian is an analytic and sign-definite function, while the frequencies of linear oscillations satisfy a 3:1 ratio. A detailed analysis of the truncated system, corresponding to the normalized Hamiltonian is given, in which terms of higher than the fourth order are dropped. It is shown that the truncated system can be integrated in terms of Jacobi elliptic functions, and its solutions describe either periodic motions or motions that are asymptotic to periodic motions, or conventionally periodic motions. It is established, using the KAM-theory methods, that the majority of conventionally periodic motions are also preserved in the complete system. Moreover, in a fairly small neighbourhood of the equilibrium position, the trajectories of the complete system, which are not conventionally periodic, form a set of exponentially small measure. The results of the investigation are used in the problem of the motion of a dynamically symmetrical satellite in the region of its cylindrical precession.
Received 25 September 2008
Link to Fulltext
<< Previous article | Volume 73, Issue 3 / 2009 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 245, 119526 Moscow, Russia (+7 495) 434-2149 pmm@ipmnet.ru pmmedit@ipmnet.ru https://pmm.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Journal of Applied Mathematics and Mechanics
webmaster
Rambler's Top100