Journal of Applied Mathematics and Mechanics (about journal) Journal of Applied
Mathematics and Mechanics

Russian Academy of Sciences
 Founded
in January 1936
(Translated from 1958)
Issued 6 times a year
ISSN 0021-8928
(print version)

Russian Russian English English About Journal | Issues | Editorial Board | Contact Us
 


IssuesArchive of Issues2009-2pp.134-144

Archive of Issues

Total articles in the database: 10512
In Russian (ΟΜΜ): 9713
In English (J. Appl. Math. Mech.): 799

<< Previous article | Volume 73, Issue 2 / 2009 | Next article >>
A.P. Ivanov, "A dynamically consistent model of the contact stresses in the plane motion of a rigid body," J. Appl. Math. Mech. 73 (2), 134-144 (2009)
Year 2009 Volume 73 Issue 2 Pages 134-144
Title A dynamically consistent model of the contact stresses in the plane motion of a rigid body
Author(s) A.P. Ivanov (Moscow, Russia, apivanov@orc.ru)
Abstract The problem of determining dry friction forces in the case of the motion of a rigid body with a plane base over a rough surface is discussed. In view of the dependence of the friction forces on the normal load, the solution of this problem involves constructing a model of the contact stresses. The contact conditions impose three independent constraints on the kinematic characteristics, and the model must therefore include three free parameters, which are determined from these conditions at each instant. When the body is supported at three points, these parameters (for which the normal stresses can be taken) completely determine the model, while indeterminacy arises in the case of a larger number of contact points and, in order to remove this, certain physical hypotheses have to be accepted. It is shown that contact models consistent with the dynamics possess certain new qualitative properties compared with the traditional quasi-static models in which the type of motion of the body is not taken into account. In particular, a dependence of the principal vector and principal moment of the friction forces on the direction of sliding or pivoting of the body, as well as on the magnitude of the angular velocity, is possible.
Received 02 November 2008
Link to Fulltext
<< Previous article | Volume 73, Issue 2 / 2009 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 245, 119526 Moscow, Russia (+7 495) 434-2149 pmm@ipmnet.ru pmmedit@ipmnet.ru https://pmm.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Journal of Applied Mathematics and Mechanics
webmaster
Rambler's Top100