Journal of Applied Mathematics and Mechanics (about journal) Journal of Applied
Mathematics and Mechanics

Russian Academy of Sciences
 Founded
in January 1936
(Translated from 1958)
Issued 6 times a year
ISSN 0021-8928
(print version)

Russian Russian English English About Journal | Issues | Editorial Board | Contact Us
 


IssuesArchive of Issues2008-3pp.250-258

Archive of Issues

Total articles in the database: 10512
In Russian (ΟΜΜ): 9713
In English (J. Appl. Math. Mech.): 799

<< Previous article | Volume 72, Issue 3 / 2008 | Next article >>
A.P. Markeyev, "Linear problems of the stability of a type of rotation of a satellite about the centre of mass," J. Appl. Math. Mech. 72 (3), 250-258 (2008)
Year 2008 Volume 72 Issue 3 Pages 250-258
Title Linear problems of the stability of a type of rotation of a satellite about the centre of mass
Author(s) A.P. Markeyev (Moscow, Russia, markeev@ipmnet.ru)
Abstract The stability in the first approximation of the rotation of a satellite about a centre of mass is investigated. In the unperturbed motion the satellite performs, in absolute space, three rotations around the normal to the orbital plane in a time equal to two periods of rotation of its centre of mass in the orbit (Mercury-type rotation). Three cases of such rotations are considered: the rotations of a dynamically symmetrical satellite and a satellite, the central ellipsoid of inertia of which is close to a sphere, in an elliptic orbit of arbitrary eccentricity, and the rotation of a satellite with three different principal central moments of inertia in a circular orbit.
Received 25 September 2007
Link to Fulltext
<< Previous article | Volume 72, Issue 3 / 2008 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 245, 119526 Moscow, Russia (+7 495) 434-2149 pmm@ipmnet.ru pmmedit@ipmnet.ru https://pmm.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Journal of Applied Mathematics and Mechanics
webmaster
Rambler's Top100