Прикладная математика и механика (о журнале) Прикладная математика
и механика

Российская академия наук
 Журнал основан
в январе 1936 года
Выходит 6 раз в год
ISSN 0032-8235

Русский Русский  English English  О журнале | Выпуски | Для авторов | Редколлегия | Подписка | Контакты
 


Архив выпусков

Статей в базе данных сайта: 10522
На русском (ПММ): 9723
На английском (J. Appl. Math. Mech.): 799

<< Предыдущая статья | Год 2011. Выпуск 3 | Следующая статья >>
Богданов А.Н., Диесперов В.Н. К устойчивости трансзвукового пограничного слоя над упругой поверхностью // ПММ. 2011. Т. 75. Вып. 3. С. 505-512.
Год 2011 Том 75 Выпуск 3 Страницы 505-512
Название
статьи
К устойчивости трансзвукового пограничного слоя над упругой поверхностью
Автор(ы) Богданов А.Н. (Москва, bogdanov@imec.msu.ru)
Диесперов В.Н. (Москва)
Коды статьи УДК 533.6.011
Аннотация

С использованием модифицированной "трехпалубной" модели исследуются возмущения в пограничном слое над упругой поверхностью при нестационарном свободном вязко-невязком взаимодействии при трансзвуковых скоростях. Модификация заключается в сохранении во входящем в состав модели уравнении Линя-Рейсснера-Цяня, при его выводе из полных уравнений для потенциала скорости, члена со второй производной по времени (сингулярного члена трансзвукового разложения), что позволяет уточнить уравнения модели и более правильно описать нестационарные и нелинейные явления. Показано, что модифицированная модель позволяет учесть возмущения, выпадающие из рассмотрения при использовании классической трехпалубной модели. Податливость поверхности может приводить к уменьшению скорости роста возмущений.

Исследование развития возмущений пограничного слоя при трансзвуковом обтекании показало [1], что упругость обтекаемой поверхности существенно влияет на рост и затухание возмущений. Имеются экспериментальные результаты, показывающие снижение сопротивления тел, поверхность которых содержит упругие элементы [2, 3]. Одно из возможных объяснений этого эффекта связано с подавлением возмущений и стабилизацией пограничного слоя на поверхности такого тела [4, 5].

Указанное исследование [1] было проведено на трехпалубной модели нестационарного трансзвукового свободного вязко-невязкого взаимодействия [6], ряд недостатков которой не позволяет дать полную картину распространения нестационарных возмущений [7]. В этой связи ниже использована модифицированная трехпалубная модель [7]. Модификация заключается в сохранении во входящем в состав модели уравнении Линя-Рейсснера-Цяня (ЛРЦ), при выводе его из полных уравнений для потенциала скорости, члена со второй производной по времени. Полученное таким образом уравнение удобно называть модифицированным уравнением ЛРЦ. В отличие от обычного уравнения ЛРЦ [8] оно описывает распространение нестационарных возмущений в поле течения в любом направлении. Использование этой модели при исследовании ряда задач нестационарного свободного вязко-невязкого взаимодействия при трансзвуковых скоростях позволило более точно описать особенности процесса развития нестационарных возмущений. Было показано [7, 9], что в пограничном слое имеются возмущения, не описываемые обычной трехпалубной моделью.

Список
литературы
1.  Савенков И.В. О влиянии упругости обтекаемой поверхности на устойчивость пограничного слоя при трансзвуковых скоростях внешнего потока // Ж. вычисл. математики и мат. физики. 2001. Т. 41. № 1. С. 135-140.
2.  Kramer M.O. Boundary-layer stabilization by distributed damping // J. Aeronaut. Sci. 1957. V. 24. № 6. P. 459-460.
3.  Kramer M.O. Boundary-layer stabilization by distributed damping // J. Amer. Soc. Naval Engrs. 1960. V. 72. P. 25-33.
4.  Carpenter P.W., Garrad A.D. The hydrodynamic stability of flow over Kramer-type compliant surfaces. Pt 1. Tollmien-Schlichting instabilities // J. Fluid Mech. 1985. V. 155. P. 465-510.
5.  Carpenter P.W., Garrad A.D. The hydrodynamic stability of flow over Kramer-type compliant surfaces. Pt. 2. Flow-induced surface instabilities // J. Fluid Mech. 1986. V. 170. P. 199-232.
6.  Рыжов О.С., Савенков И.В. Об устойчивости пограничного слоя при трансзвуковых скоростях внешнего потока // ПМТФ. 1990. № 2. С. 65-71.
7.  Богданов А.Н., Диесперов В.Н. Моделирование нестационарного трансзвукового течения и устойчивость трансзвукового пограничного слоя // ПММ. 2005. Т. 69. Вып. 3. С. 394-403.
8.  Cole J.D., Cook L.P. Transonic aerodynamics. Amsterdam, etc.: North-Holland, 1986 = Коул Дж., Кук Л. Трансзвуковая аэродинамика. М.: Мир, 1989. 360 с.
9.  Богданов А.Н., Диесперов В.Н. Волны Толлмина-Шлихтинга в трансзвуковом пограничном слое. Возбуждение извне и с обтекаемой поверхности // ПММ. 2007. Т. 71. Вып. 2. С. 289-300.
10.  Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables / Eds M. Abramowitz and I.A. Stegun. Washington: Nat. Bureau Standarts, 1964 = Справочник по специальным функциям с формулами, графиками и математическими таблицами / Под ред. М. Абрамовитца, И. Стиган. М.: Наука, 1979. 830 с.
11.  Жук В.И. Волны Толлмина-Шлихтинга и солитоны. М.: Наука, 2001. 167 с.
12.  Богданов А.Н. Высшие приближения трансзвукового разложения в задачах нестационарных трансзвуковых течений // ПММ. 1997. Т. 61. Вып. 5. С. 798-811.
Поступила
в редакцию
24 мая 2010
Получить
полный текст
<< Предыдущая статья | Год 2011. Выпуск 3 | Следующая статья >>
Система OrphusЕсли Вы обнаружили опечатку или неточность на странице сайта, выделите её и нажмите Ctrl+Enter

119526 Москва, пр-т Вернадского, д. 101, корп. 1, комн. 245 (495) 434-21-49 pmm@ipmnet.ru pmmedit@ipmnet.ru https://pmm.ipmnet.ru
Учредители: Российская академия наук, Институт проблем механики им. А.Ю. Ишлинского РАН
Свидетельство о регистрации СМИ ПИ № ФС77-82145 от 02 ноября 2021 г., выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций
© ПММ
webmaster
Rambler's Top100