Рассматриваются свободные колебания упругой пластины, расположенной ортогонально дну безграничного открытого водоема постоянной глубины. Водоем заполнен сжимаемой жидкостью, пластина выступает над свободной поверхностью и жестко скреплена с дном. Гравитационные эффекты не учитываются. Находится аналитическое представление акустического поля в жидкости и вибрационного поля в пластине. Вычисляются собственные частоты и собственные формы колебаний в зависимости от высоты уровня жидкости. Рассмотрен приближенный подход к расчету колебаний пластины.
Прохождение акустических волн сквозь ортогональную тонкую упругую перегородку в цилиндрическом или плоском волноводах рассматривалось ранее [1-6] при условии, что пластина (или мембрана) перекрывает канал волновода, но не выходит за его пределы.
В качестве обобщения этой модели были рассмотрены свободные колебания закрепленной мембраны, перекрывающей канал плоского волновода и выступающей над поверхностью жидкости; было построено точное аналитическое представление поля смещений мембраны и поля давлений в акустической среде [7], причем задача рассматривалась как гранично-контактная [8-10] с гранично-контактными условиями на линии пересечения мембраны с поверхностью жидкости.
В отличие от известных моделей [1-6] в новой модели [7] волновод имеет частоту отсечки, т.е. частоту ниже которой в нем невозможен распространяющийся волновой процесс. Низкочастотные колебания в нем локализуются вблизи источника волнового поля. Расположенные в таком волноводе механические объекты с собственными частотами ниже частоты отсечки обладают незатухающими формами колебаний. Такими объектами могут быть, например, контактирующие с волноводом упругие тела [7] и резонаторы, образованные расширением канала волновода [11]. Локализованные колебания теоретически могут иметь место также и в случае, когда в волноводе существуют распространяющиеся нормальные волны [6, 12], но при этом существование незатухающих собственных процессов возможно лишь при некоторых дополнительных условиях.
Ниже, в развитие предложенной ранее модели [7] рассматривается случай, когда упругим объектом, перекрывающим волновод, служит не мембрана, а пластина. Цель работы - расчет собственных частот и форм колебаний пластины для диапазона частот, когда распространение нормальных волн в волноводе невозможно.
По сравнению с мембраной более высокий порядок уравнений, описывающих колебания пластины, порождает, более богатый ассортимент условий на ее концах. Приводятся дисперсионные уравнения и расчеты собственных частот для пластины, как закрепленной с обеих сторон (расчетные кривые внешне сходны с соответствующими кривыми для мембраны, приведенными ранее [7], хотя и сильно разнятся количественно), так и для случая свободного верхнего края пластины, которые не имеют физически оправданных аналогов для мембраны (модель свободного края для мембраны достаточно искусственна с точки зрения приложений и ранее [7] не рассматривалась).
В заключение рассматривается вопрос о приближенном подходе к расчету колебаний пластины и степени его правомочности. При таком подходе (пригодном, в отличие от точного подхода, только при частотах ниже частоты отсечки) пластина предполагается состоящей из двух частей. Для непогруженной части используется традиционное описание, а погруженная часть моделируется как "утяжеленная пластина": к ее линейной плотности добавляется линейная плотность присоединенной массы жидкости.