| | Прикладная математика и механика Российская академия наук | | Журнал основан
в январе 1936 года
Выходит 6 раз в год
ISSN 0032-8235 |
Архив выпусков
Статей в базе данных сайта: | | 10522 |
На русском (ПММ): | | 9723 |
На английском (J. Appl. Math. Mech.): | | 799 |
|
<< Предыдущая статья | Год 2007. Выпуск 5 | Следующая статья >> |
Чугайнова А.П. Автомодельные асимптотики волновых задач и структуры неклассических разрывов в нелинейно-упругих средах с дисперсией и диссипацией // ПММ. 2007. Т. 71. Вып. 5. С. 775-787. |
Год |
2007 |
Том |
71 |
Выпуск |
5 |
Страницы |
775-787 |
Название статьи |
Автомодельные асимптотики волновых задач и структуры неклассических разрывов в нелинейно-упругих средах с дисперсией и диссипацией |
Автор(ы) |
Чугайнова А.П. (a.p.chugainova@mi.ras.ru) |
Коды статьи |
УДК 539.3:534.1 |
Аннотация |
Изучаются решения нелинейных гиперболических уравнений, описывающих квазипоперечные волны в композитных упругих средах в рамках ранее предложенной модели, учитывающей малые диссипативные и дисперсионные процессы. Для этой модели известно, что если строить решение задачи о распаде произвольного разрыва с использованием волн Римана и разрывов, имеющих структуру, то решение оказывается неединственным. С целью изучения проблемы неединственности численно строятся решения неавтомодельных задач в рамках упомянутой модели с начальными данными в виде "сглаженной" ступеньки. Решения с ростом времени выходят на автомодельную асимптотику, соответствующую некоторому решению задачи о распаде произвольного разрыва. Показано, что, изменяя способ сглаживания ступеньки, можно построить любую из автомодельных асимптотик, аналогично сделанному ранее [1] для сред с противоположным знаком члена, отвечающего за нелинейность, хотя множество допустимых разрывов и строение решений задач в этих случаях оказываются различными. |
Список литературы |
1. | Чугайнова А.П. Асимптотическое поведение нелинейных волн в упругих средах с дисперсией и диссипацией // Теоретическая и математическая физика. 2006. Т. 147. № 2. С. 240-256. |
2. | Куликовский А.Г., Погорелое Н.В., Семенов А.Ю. Математические вопросы численного решения гиперболических систем уравнений. М.: Физматлит, 2001. 607 с. |
3. | Куликовский А.Г. О возможном влиянии колебаний в структуре разрыва на множество допустимых разрывов // Докл. АН СССР. 1984. Т. 275. № 6. С. 1349-1352. |
4. | Куликовский А.Г., Чугайнова А.П. Моделирование влияния мелкомасштабных дисперсионных процессов в сплошной среде на формирование крупномасштабных явлений // Журнал вычислительной математики и математической физики. 2004. Т. 44. № 6. С. 1119-1126. |
5. | Куликовский А.Г., Гвоздовская Н.И. О влиянии дисперсии на множество допустимых разрывов в механике сплошной среды // Тр. МИАН. 1998. Т. 223. С. 63-73. |
6. | Куликовский А.Г., Свешникова Е.И. Нелинейные волны в упругих средах. М.: Моск. Лицей, 1998. 412 с. |
7. | Свешникова Е.И. Простые волны в нелинейно упругой среде // ПММ. 1982. Т. 46. Вып. 4. С. 642-646. |
8. | Куликовский А.Г., Свешникова Е.И. Исследование ударной адиабаты квазипоперечных ударных волн в предварительно напряженной упругой среде // ПММ. 1982. Т. 46. Вып. 5. С. 831-840. |
9. | Бахвалов Н.С., Эглит М.Э. Эффективные уравнения с дисперсией для распространения волн в периодических средах // Докл. РАН. 2000. Т. 370. № 1. С. 1-4. |
10. | Куликовский А.Г., Свешникова Е.И. Автомодельная задача о действии внезапной нагрузки на границу упругого полупространства // ПММ. 1985. Т. 49. Вып. 2. С. 284-291. |
11. | Самарский А.А., Попов Ю.П. Разностные методы решения задач газовой динамики. М.: Наука, 1980. 352 с. |
|
Получить полный текст |
|
<< Предыдущая статья | Год 2007. Выпуск 5 | Следующая статья >> |
|
Если Вы обнаружили опечатку или неточность на странице сайта, выделите её и нажмите Ctrl+Enter
|
|