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N. E. JOUKOVSKY
(1847 — 1921)

In this great personality we find the union of higher
mathematics and engineering. In him we hkave the
finest blend of thecretical science and technics; he
was almest a university in himself.

(5. 4. Chaplygin)

Nicholai Egorovich Joukovsky was born in 1847 in the little town of Orekhovo,
near Vladimir. His father studied at the St. Petersburg Institute of Transport
Engineers at a time when such outstanding scientists as Clapeyron and Lamé were
on the teaching staff. When the time came to choose a teacher {or his son, the father
engaged a young Moscow physician, named Repman. His father’s example, Rep-
man’s instruction, the atmosphere of learning in his home, all combined to mould
the boy’s character and develop him along scientific lines.

At the Moscow University, which he attended from 1864 to 1868, Joukovsky
looked upon his studies as preparation for an engineering career. This interest
in the practical aspects of his work must be regarded as an important factor in the
development of his scientific thought.

The training he received in the classical university tradition of the 60’s and
70’s, when interest in mechanics centred about mathematical questions connected
with the motion of solids influenced Joukovsky’s first studies. However, even in
these classical investigations, Joukovsky’'s work is already characterized by geo-
metrical and physical content.

At the beginning of the 20th century we find the applied element in research
fully developed in Joukovsky’s studies in mechanics and hydrodynamics, lending
his investigations a concreteness whose significance cannot be overestimated.
Even as a scientist of world fame, Joukovsky spoke of the importance of engineer-
ing. Time and again we find the stimulus for abstract thought arising out of di-
rect observation of natural phenomena.

Joukovsky's method introduced a new element in investigations, by making
working hypotheses as a preliminary to thestudy. This enabled him to concentrate
on the central feature of the problem, to simplify the study of complex phenomena.
However, once the problem was outlined, it was pursued with all the painstaking
and rigorous mathematical analysis required by Newtonic thought.

Joukovsky drew his working hypotheses from experiment; experiment again
was the final test of all theoretical results. In this sense he was the forcrunner of
the Goettingen school; essentially the same idea in mechanics research is now fol-
Towed all over the world.

After presenting his master’s thesis in 1876, Joukovsky made his first trip
abroad. It was in the course of this sojourn, spent mainly in France, that he made
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‘the acquaintance of the brilliant French school of the day: of Darboux and Poin-
-caré, of Lévy and Résal. How these contacts influenced him is seen in later classi-
cal studies in mechanics, particularly in the stability of motion.

In Paris Joukovsky came more deeply in touch with the geometry of Poncelet
and Monge; his studies at the time strengthened the tendency toward geome-
trical exposition seen in his master’s thesis Kinematics of Fluids; and made
for the geometrical elegance characterising his exposition throughout his life.

Exactly when Joukovsky first became interested in flying is impossible to say.
Perhaps when, as a boy, he stood watching the birds wheeling above the Orekhovo
fields. We know he attended international aeronautical congresses; that during
a vacation period from the University he entertained the country lads by explain-
ing the features of the flight of the pigeons.

In 1891 he published his first study 7'he Soaring of Birds. Others had dreamed
of flying: the tale goes back at least as far as the Daedalus and lecarus myth.
Joukovsky’s was not a mere dream; it was amazing scientific intuition coupled
with the knowledge of physics and mechanics required to give it concrete existence.

In 1895 Joukovsky heard of Lilienthal’s glider and his experiments in flying
in a heavier-than-air craft. His boundless curiosity and innovator’s enthusiasm
‘were roused to the highest pitch: he traveled to Lilienthal’s home, made his
acquaintance, and spent some time studying the glider and discussing its con-
struction and possibilities. By 1902 he had constructed a wind tunnel in the me-
chanics laboratory of the Moscow University and was conducting experiments on
the lift force and resistance of a wing. The significance of these first studies
and experiments is all the greater when we recall that the first successful flight
of the Wright brothers was not carried out until 1903.

In 1906 Joukovsky published his investigation Bound Vortices, containing
bis famous theorem on the connection between the lift force and circulation. In
subsequent studies of the origin of circulation, Joukovsky evolved the theory that
it is the streams breaking away from the back edge of the wing that give rise to the
circulation. The Joukovsky hypothesis made it possible to determine the circu-
lation about a wing and gave the Joukovsky theorem its direct application to
aviation. The successful studies of 1ift force led to both Joukovsky’s theory of the
propeller and Prandtl’s theory of the finite wing: both theories as well as the de-
termination of lift force are the development of the famous Joukovsky theorem.
Joukovsky’s work in the field laid the foundations of aerodynamics as a science.

An examination of Joukovsky’s achievements in aviation increases our asto-
nishment that he should have done so much in other fields. He carried out geomet-
rical analyses in the impact of solids and presented new conceptions of degrees
of stability of motion. His studies of solids containing cavities filled with a liquid
are of the highest interest to astronomy and laid the ground for further develop-
ments in the theory of modern shells. He studied the rolling of ships and prop-
erties of lubricants. He investigated the nature of flow in rivers, the shape of snow-
drifts and silt deposits. He explained the movement of ground water and the fact-
ors causing water hammer in pipes. Nor was this diffusion of interest, that so
often leads to superficiality. It was the application of rare genius to various nat-
ural phenomena; and in practically every field he touched upon, Joukovsky's
achievements are outstanding.
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Joukovsky was truly indefatigable in research. He returned to the same prob-
lems time and again. He was never satisfied until he was in a position to present
his results in final form, with numerical examples: we are struck by their geometri-
cal elegance and by the striking analogies his great erudition enabled him to draw.
His inexhaustible energy of mind'produced as high as four profound studies a year;
the ten volumes of his collected works contain numerous fundamental investiga-
tions and a great number of shorter articles and speeches, all of high excellence.

Joukovsky's work lives today and will continue to be of significance in the
future. Every examination brings to light new wellsprings of thought and stimu-
lates new lines of research. Each succeeding generation of engineers finds some-
thing it can take from Joukovsky, and this process is far from ended. He is not only
the teacher of Chaplygin and numerous other outstanding scientists in this country,
not only the pride of Russian science: the entire world is indebted to him for a
great and lasting contribution to human progress.

THE WORKS OF JOUKOVSKY

Joukovsky’s investigations in the field of mechanics are so varied and exten-
sive that it is possible to outline only his basic researches here. It has been found
gonvenient in the present review to group his works under three main headings:
hydrodynamics and hydraulics, general mechanics, and aerodynamics; chronolo-
gical order being preserved where possiblel.

1. Hydrodynamics and Hydraulics

Joukovsky’s work in hydrodynamics began with his master’s thesis Kine-
matics of Fluids 11 1111 presented in 1876 at the Moscow University.

Investigation of deformation of fluid particles in motion had not been carried
to completion at the time. Research was mainly of an analytic character and there-
fore lacked the clarity brought into any field by geometry.

Joukovsky himself states in the introduction to his thesis:

“The great clarity which geometrical investigation lends to the study of the
dynamics of solids leads us to expect significant success in hyrodynamics through
a study of the kinematics of variable systems’’.

Chapter 1 of the thesis gives the results obtained by Cauchy and Helmholtz,
and goes on to a discussion of the motion of an infinitesimal fluid particle. The
motion of the particle is resolved into external translation and rotation and
internal strain motion, changing the originally spherical shape into an ellipsoid.

Joukovsky resolves the internal motion of the particle into elongation, shear
and deviation; and goes on to a determination of lines and planes of constant di-
rection for total (internal and external) motion of the particle relative toits centre.
Joukovsky proves that the locus of normals to planes of constant direction instrain
and rotation of the particle is a cone of the third order. The generatrix of the cone
passes through the axes of deformation; the intersections of the cone and the planes
of deformation are projections of the axis of rotation.

L The Arabic numerals in brackets following titles indicate works in the chronologi-
cal list (page 27), while the Roman numerals indicate the volume of the Collected Works
ol Joukovsky where the given work may be found.



Chapter two discusses stream lines and the velocities of the fluid. The investi-
gation of streamline surfaces leads to Dupin’s theorem of orthogonal surfaces,
and to Joachimstahl’s theorem. In the subsequent discussion of circulation of
velocities the author introduces critical points, in whose vicinity the shape of lines
of flow is discussed in great detail. At these points the streamlines cither intersect,
osculate or have infinite curvature, the velocity components are either equal to
zero or infinity, or become indeterminate.

In the investigation of plane parallel motion, Joukovsky makes a detailed
analysis of the distribution of streamlines in the vicinity of critical poiuts. It is
found that in the vicinity of zero critical points of the first order, i. e. points at
which velocity components are equal to zero while their derivatives relative to
the coordinates are finite and not all equal to zero, the streamlines are either hyper-
bolic or elliptic. In the former case the two streamlines intersect in the critical
point, in the latter case the streamlines pass around the critical point, approach-
ing infinitesimal ellipses. Zero points of the n—1 order or infinite points of
the n—1 order, should they exist, are intersection points of n streamlines.

The chapter ends with a discussion of certain properties of a three-dimensional
non-vortex motion of an incompressible fluid, and of a related motion whose
velocities are determined by the curvature of the streamlines and the contraction
of the currents. Chapter three is devoted to a discussion of the resultant flow for
given components, and the theorem of Beltrami.

Chapter four investigates properties of accelerations of points of a fluid in
motion. The chapter opens with general theorems on acceleration, among them a
generalization of the theorem of Coriolis. This is followed by a discussion of con-
ditions for trajectories and velocities of flow of an incompressible fiuid, for which
the acceleration will have a potential function.

In his works Reaction in Cases of Expulsion and Inflow of a Liquid 113, 14, 1V1
(1882, 1885) Joukovsky proves that the reaction on a stationary vessel immersed
in an infinite liquid is equal to zero in both cases, provided there is no friction
and the variation of the velocity is continuous. Where the expulsion is accom panied
by the formation of a jet, on whose surface variation of velocity is discontinuous,
the reaction is finite. The value of this reaction, determined by the author, remains
the same even if the vessel is not stationary. The author also shows that the re-
action of inflow is not equal to zero in the case of a non-stationary vessel.

The paper, Impact of Two Spherical Solids, One of Which is Floating in a
Liguid 1** 111 was published in 188%. One ball, floating in the centre of a semi-
spherical vessel receives an impact from a second falling vertically. Joukovsky
takes up the problem for both elastic and inelastic spheres, and shows that the for-
mulae for the velocities after impact are the same as for impact in a vacuum,
provided the mass of the floating ball is increased to definite proportions. If the
mass of the liquid is infinite, the mass of the floating ball must be increased to
half the mass of the displaced liquid. This work was the first of a large number
by Russian scientists devoted to the impact of solids on water.

An extensive work by Joukovsky, Motion of a Solid with Cavities Filled with
a Homogeneous Liquid, 1*7- 1111 was published in 1885. The work was awarded the
Brashman prize by the Moscow University in 1886. Existing works at the time
either dealt with particular cases or only touched on the problem in passing.
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Joukovsky's is the first general treatment of the subject. In addition to several
new general theorems, it contains solutions of the problem for a number of cavity
shapes not investigated previously, and for multi-connected cavities. Joukovsky
extends his investigation to cases of a viscous fluid and to vortex motion.

In its most general form, motion is composed of translation and rotation.
Translation does not give rise to motion of the fluid relative to the cavity; whereas
rotation causes relative motion of the fluid enclosed in the cavity, this motion
being completely determined by the rotation of the body. In case of the existence
of a velocity potential, the determination of the motion of the liquid is analytically
reduced to the internal problem of Neumann for the Laplace equation. To obtain
the equation of motion of the solid, the solid and the liquid may be regarded as
a single dynamic system, when the motion of the liquid has been determined in
terms of velocity components.

In chapter one the author shows that in the relative motion of the liquid,
velocity is greatest at the surface of the cavity, and that if velocity of relative
motion at any point in the liquid becomes very great, the pressure throughout the
volume also becomes very high. Joukovsky goes on to show that without changing
the motion of the system as a whole, the liquid mass may be substituted by an
«quivalent solid!; should the solid be one with multi-connected cavities and if the
liquid is given an initial circulation in the cavities, in addition to replacing these
liquid masses by equivalent solids a gyroscope must be attached, the direction
of whese axis of rotation and moment of initial momentum are determined by the
principal moment of momentum of the liquid masses when the body is at rest.
Joukovsky points out that his method of treating cases of multi-connected cavities
removes the doubt felt by Neumann in investigating the problem.

Chapter two deals with the determination of the internal motien of the liquid
and of the ellipsoids of inertia of equivalent solids for cavities of various shapes.
It opens with a detailed treatment of an ellipsoidal cavity, then goes on to cylind-
rical and prismatic cavities. Joukovsky then proceeds to a discussion of cavities
having the shape of solids of revolution, the entire system itself rotating about
an axis at right angles to the axis of the cavity. As an example of a multi-connected
system, the author considers a bi-connected cavity as represented by an infinitely
thin closed tube of arbitrary shape. He shows that for all thoroidal cavities the
principal moment of the intial momentum is equal to the product of the mass of
the liquid and the circulation velocity, divided by 2=.

The first case considered in chapter three is that of vortex motion of the
liquid in the cavities of a moving body. Joukovsky sets up equations which must
be satisfied by the components of the angular velocity of the solid and by the com-
ponents of the vortex. He also establishes the formula for the pressure of the liquid.
As examples, he considers a cylindrical and an elliptic cavity.

Joukovsky now proceeds to a consideration of the influence of fricticn, set-
ting up differential equations for the motion of solid and liquid, and the formula
for the pressure. Joukovsky discusses Helmholtz® problem of escillations of a
solid about a fixed axis. The solid contains a viscous fluid within a spherical cavity
and is subjected to a torque proportional to the angle of rotation.

' Stokes’ proof of the possibilily of replacing a lignid mass by an equivalent solid
tefers only to the particular case of low velocities. Joukovsky’s is the general case.
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Employing Poiseuille’s theory of laminar flows, the author solves a new prob-
lem, that of the motion of a closed tube filled with a liquid. The solution is veri-
fied by means of an apparatus constructed by the author himself,

The paper concludes with a number of remarks regarding the motion of a frec
solid containing a viscous fluid confined within it. Joukovsky proves that if ini-
tial velocities are imparted both to a solid containing a cavity and to the viscous.
liquid filling the cavity, the motion of the system tends to an ultimate state in
which one of the principal axes of inertia has the direction of the principal moment
of the initial moments of motion, and the whole system will rotate about this axis.
with a constant angular velocity. This result is of great importance in cosmogony-

We are indebted to N. Joukovsky for important results in the hyrodynamic
theory of friction. The first of three works he wrote on the subject is Hydro-
dynamic T heory of Friction of Well Lubricated Solids (1886). Joukovsky’s interest
in the subject was aroused by a previous work by N. P. Petrov, who investigated the-
motion of the lubricant layer between rotating concentric cylinders. Petrov held
that the hydrodynamic pressure over this layer is constant. However, Joukovsky
points out the necessity of considering the forces enabling the lubricant to counter-
act the load exerted upon it by the shaft. Joukovsky considers these forces as pres-
sure resulting from the motion of a thin layer of lubricant confined between rota-
ting eccentric cylindrical surfaces. In view of the complexity of the problem,
Joukovsky in this work limits his investigations to a somewhat different case.
In the conclusion he points out that in general the action of the lubricant must
be considered hydrodynamically, the more so since experiment proves the depen-
dence of the thickness of the layer on the velocity. His second paper on the
subject is Motion of a ViscousFluid Confined Between Rotating Eccentric Cylindrical
Surjacest32:.1V1 (1887). Employing ecircular bi-polar Neumann cocrdinates and
neglecting the force of inertia in comparison with the force of friction, Joukovsky
reduces the problem to the solution of an equation in partial differentials of the
second order. Hefinds both the velocity components within the layer, the pressure
of the layer on the internal cylinder, and the resultant torque. The results are
applied to the investigation of the rotation of a shaft in a bearing, when shaft and
bearing rotate in opposite directions with equal angular velocities.

The investigation reached its final form in a third work which Joukovsky
wrote in collaboration with his pupil 8. Chaplygin, entitled Friction of a Lubricant
Between a Shaft and its Bearingl191.1V1 published in '1906. The method employed in
this work is, in effect, the same as that in the previous paper. The authors succeed
in obtaining a complete solution of the two-dimensional problem of the motion
of a viscous fluid layer between eccentric circumferences,’no particular assumptions
being made as to the thickness of the layer. The authors show at the end of the
work that the results of Sommerfeld (1904) for a layer of small thickness foliow
as a particular case. It is interesting to note that in 1924 Diiffing, in Zeitschrifft
fiir angewandte Mathematik und Mechanik, repeated this investigation.

In his work T heoretical Investigation of the Motion of Ground W ater36-V11] (188Q).
Joukovsky takes up various cases of motion of water in sand. Employing the Darcy
law, he sets up equations for this motion, neglecting inertia terms. The author
shows that the motion of water in sand is governed by the same laws which hold
for the propagation of heat, the piezometric head and discharge acting as the tem-
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perature and quantity of heat respectively. The paper takes up various cases ol
wells and reservoirs.

The object in this work is to find to what extent the theory based on the Darcy
law agrees with practical results; since a number of investigators had found it
necessary to make corrections in the law. Joukovsky shows that the Darcy law is
fullysatisfactory provided all the boundary conditions aretaken into consideration,
and if the law is not applied in cases of great distances from the well.

Connected with this paper is Joukovsky’s experiment Influence of Pressure
on Sand Saturated with Waterli0.Viil (1890) in which he shows that the level of the
water in sand rises with an increase in atmospheric pressure. The phenomenon
is due to the presence in the sand of air bubbles whose volume diminishes as.
pressure increases. This enables the water to occupy more space.

Joukovsky outlines the general method for the investigation of filtration of
a liquid in his last work, published after his death, Filtration of Water through a
Dam!157.V111 (1923). He gives a concise description of how the procedure given in
his Modification the Kirchhoff Method..., may be applied to arrive at the solu-
tion of numerous problems in filtration earlier investigated by N. N. Pavlovsky.

"In aconcise paper On the Form of Ships’ Hulls41.1V1 1890 Joukovsky applies
the Rankin frictional theory of force of resistance to the shape of the hulls of ships.
with a sharp bow. Joukovsky considers the problem as a case of plane parallel
flow and introduces elliptical coordinates. The author expresses the rectilinear
coordinates of points on the contour of the ship in terms of these elliptical coordi-
nates by means of infinite series. He selects the coefficients of these series to arrive
at a suitable contour which is simultaneously the stream line.

Joukovsky’s interest in the calculation of water waves and the rolling of a
ship led him in 1908 to make reports on the question to the Naval Department.
Unfortunately, the text of these reports has been lost. However, A. P. Kotelnikov
came upon a draft manuscript among Joukovsky's papers, entitled On a Body
Floating on the Surjace!162:1V], While this work published by A. P. Kotelnikov in
1931 may not be the final variant, it is of great interest as the first attempt at a
hydrodynamic solution of the problem, pointing out for the first time the import-
ance of considering the conjoint mass of liquid in calculating the rolling of ship.

In another work entitled The Wave in a Ship’s Wakel114.1V](1907) Joukovsky
studies the shape of the wave in the wake of a ship of cylindrical form. He deter-
mines the resistance due to the wave, analysing the phenomenon both in shallow
and in deep water. Neglecting the vertical component of acceleration and assuming
that the distribution of pressure along the vertical is hydrostatic, Joukovsky redu-
ces the problem to a differential equation of the second order, in partial derivati-
ves, similar to the equation for oscillating motion. He obtains a formula for the
resistance of a ship in the form of an integral including a function determining
the shape of the ship’s hull. Employing variation calculus, Joukovsky is thereby
enabled to determine that form which will present the least resistance to motion.
The form is found to consist of two arcs of a parabola.

We now come to a very important work, entitled Modification of Kirchhoff’s
Method of Calculating a Two-Dimensional Motion of a Fluid, Given a Constant
Velocity along an Unknown Streamlinel37-1111(1890). Joukovsky himself formulates
his objective as follows in opening paragraph:
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“The proposed modification of Kirchhoff's method proceeds to the solution
of a particular problem without preliminary conformal representation of the do-
mains of the corresponding contours, thus eliminating a superfluous operation
necessary in Kirchhoff’s original method. The problem is restricted neither by
the number of points of zero velocity nor by the number of streams’’.

Joukovsky's method considerably expands the field of the problems of plane
parallel non-vortex flow of an incompressible fluid in cases of formation of jets.
The method, which is now generally known, may be outlined in brief here.
The author considers the function of the complex variable, the real part of the
function being the velocity potential and the imaginary part, the streamline func-
tion. Joukovsky also considers the logarithm’ of the derivative of this function.
The introduction of the logarithm presents a considerable advantage over the
derivative alone, as found in Kirchhoff’s method. The real part of the logarithm
is equal to the logarithm of the ratio of the veloeity at infinity to the velocity
at the given point, while the coefficient of ¢ is equal tothe angle between the velo-
city vector and the real axis. Joukovsky maps the domains of these two functions
of the complex variable on the upper semi-plane of an auxiliary complex variable
30 that the boundary streamline corresponds to the real axis. Expressing both
functions of the complex variable in terms of the auxiliary variable, separating
the real and imaginary parts and equating them to arbitrary constants, Joukovsky
obtains two families of mutually orthogonal isothermic lines, which he calls the
generating and the directing network respectively.

On the basis of these ideas, Joukovsky solves a large number of problems, the
majority of which had never been previously investigated. The first group deals
with the expulsion of a fluid from vessels, both symmetrical and asymmetrical;
from vessels with infinite flat walls and from a vessel of finite width and infinite
height or vice versa. In this group, though differing in some aspects, is the problem
of expulsion of a fluid from an infinite vessel through a tube.

The second group takes up the impact of a jet on a symmetrical and on an asym-
metrical wedge; symmetrical impact on a plate; impact on a plate consisting of
two planes placed at an angle to each other, the initial flow being parallel to one
of the planes; impact of a stream bounded by parallel walls against a symmetrical
wedge; impact on arectangular vessel; impact on a plate at the mouth of a channel.

The third group deal with the impact of a jet on a symmetrical wedge; the
mutual impact of two jets; impact on a plate at the outlet from a channel with
parallel walls; concentration of a jet by a funnel placed in its path.

The work ends with a discussion of a stream passing through a grid. Chaplygin
and others of Joukovsky’s pupils found it necessary to modify the results, which
Joukovsky believed might apply to the action of a turbine. Chaplygin pointed
out that the oncoming stream has a direction at right angles to the grid at infinity.

Joukovsky's method has been extended to cover a multitude of problems.
It has also been generalized by L. Sedov in Theory of Plane-Parallel Motions of
@ Perfect Non-Compressible Fluid (1939) for flow past an arbitrary curvilinear
contour and makes it possible to solve problems with any number of jets.

Joukovsky devoted a number of investigations to the theory of vortices, among
them such important works as: The Problem of Cutting Vortex Filamentsi581111(1893),
Bound Vortices!'"6.51(1907), Karman's Vortex Theory of Dragi!33.V1 (1914).
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In the first of the above works, Joukovsky discusses the impossibility, estab-
lished by experiment, of cutting a vortex filament into parts. In his theoretical
investigation of the question, Joukovsky employs the method of conformal repre-
sentations to study the motion of a vortex in the vicinity of a straight boundary
of infinite length in the two following cases: when the fluid is at rest at infinity;
and when the fluid moves along the boundary with a velocity at infinity.

The first case is investigated by connecting the representation to the vortex,
the circulation being in the opposite direction; while the second case is derived
from the first by superimposing an additional translation velocity on the entire
mass of the fluid parallel to the real axis, two zero critical points being formed
on this axis. By mapping the semi-plane on an angle, the author arrives in the first
case at a motion of the vortex within the angle which is less than «, and in the second
case a motion outside the acute angle. In the particular case, this angle may ap-
proach zero, and thereby represent the form of a knife edge. 1t is found that all the
possible trajectories of the vortex deviatefrom the edge, proving that it is impossible
to cut a vortex filament lengthwise.

Of the highest significance is the second work Bound Vortices (1907). We
shall not give a detailed description, since the basic results are found today in all
courses 1in hydrodynamics and aerohydrodynamics, including the well known Jou-
kovsky theorem, which will be taken up in the section on acrohydrodynamics.

Published for the first time in Russia in 1890 and subsequently in French
and English scientific journals is Joukovsky’s important research, Water-Hammer
in Pipes|3" VIl which is of great importance both to theory and practice.

Joukovsky founded his theorctical investigations on experiments carried out
on the water system of the city of Moscow. Before Joukovsky, the formation of
a water hammer by the rapid closing of a tap was not related to the theoretical
investigation of the propagation of a sound wave in an elastic tube. Joukovsky
points out that the probable reason why engineers had not thought of studying the
problem in connection with wave propagation was that observations had been
carried out only in short pipes, in which the rapidity of propagation of the wave
made the phenomenon almost simultaneous throughout the range of the pipe. His
own conception of the phenomenon enabled him to connect his research with the
theoretical investigations of Résal, Gromecka, Korteweg and Lamb, on the varia-
Lion of pressure along a pipe with elastic walls.

After formulating the general theory of the water hammer, Joukovsky applics
it to such subjects as water hammer 1n a blind pipe, the reflection of the shock wave
by the open end of a pipe, the influence of the time element in closing the tap on
the water hammer, the effect of air cowl and water cowl, of safety valves. At the
end of his work, Joukovsky gives the application of water hammer diagrams in
determining the place of formation of air cushions or leaks in the pipe.

Joukovsky summarized his principal results as follows: 1. The water hammer
is propagated along the pipe with a constant velocity, whose magnitude is not
dependent to any significant degree on the force of the shock wave. This velocity
1s dependent on the material of which the pipe is constructed and the ratio of the
thickness of its walls to its diameter. The velocity of the shock wave remains the
same whether it is caused by the sudden stoppage of the flow of water in the pipe,
or by a sudden great increase in the pressure.

TlpnrJagian Marevarrea ir Mexanmnra, Ne 1. 4
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2. The water hammer is propagated along the pipe with constant force. Its
magnitude is proportional to the velocity of flow lost in the shock and the velocity
of propagation of the shock wave in the pipe.

3. The rise of periodical oscillations of shock wave pressure is the result of
the reflection of the shock wave by the ends of the pipe.

4. A dangerous increase in shock wave pressure occurs when the wave passes
[rom a pipe of large diameter into a pipe of small diameter. When the wave reaches
blind ends its force is doubled. This doubling may be repeated several times over,
attaining great proportions should the corresponding conditions exist.

5. The simplest means of guarding against water hammer is the use of applian-
ces to slow down the shutting off of the flow. The time spent in closing the tap
should be proportional to the length of the pipe. Air cowls of the proper dimensions
at the taps reduce the shock wave to negligible proportions if placed in the line
of the pipe; however it is extremely difficult to preserve the air cushion in the cowl.

Of the great number of other works by Joukovsky on the subject of hydrody-
narmnics and hydraulics, the two following will illustrate the breadth of his inte-
rests inthe field; Snow Driftst122:11111911, and Snow Drifts and Depositing of Silt
in Rigersi150.1111 1919,

In snowstorms, drifts formed when the wind encounters an obstacle do not
lie up against the obstacle, but leave a depression between the drift and the wind-
breaker. Joukovsky gives a general explanaticn of the phenomencn. In the first
of the above works he considers plane parallel flow of a fluid, the obstacle being
taken in the form of an infinite circular cylinder at right angles to the {low. Assu-
ming the velocity of the wind to be proportional to the height above the earth,
Joukovsky superimposes two flows on the given motion, chesen to make the con-
tour of the cross section of the eylinder the stream line. These two flows have poles
of the first and second order within the circular contour. Superimpesing on the
resultant motion another flow caused by a vortex to windward of the cylinder and
by the representation of the vortex relative to the circular contour, Joukovsky
arrives at streamlines corresponding to the motion of smow particles in the storm.

In the second paper, Joukovsky employs the expression for the streamline
function in the vicinity of a zero critical point (given in his master’s thesis) to
set up the differential equations of motion of a snow particle caused by the force
of gravity and the force of resistance of the air, the force of air resistance being
taken propertional to the velocity of the wind related to the flying particle. By
integrating these differential equations, Joukovsky defines the trajectory of the
snow particle and establishes the form of the drifts to windward and leeward of the
obstacle. The same procedure is applied in the analysis of silt deposits in rivers.

2, General mechanics

The earliest of Joukovsky’s most significant works in the field of general
mechanics was Stability of Motion 1882, the theme of his doctor’s thesis.

Earlier investigations in the field had been concerned mainly with particular
cases. The first attempts to formulate a general thecry were made by Thempson
and Tait, and Routh. Joukovsky's research differed both in point of view and me-
thod of analysis from Routh’s Treatise on the Stabiliiy of a Given State of Motion,
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which appeared at almost the same time. Joukovsky's formulation of the question
of stability of a conservative system retains its significance to the present day,
even after the appearance of the famous work of Liapounoff on stability of motion.

The opening chapter of Joukovsky’s work considers the motion of a point
over a surface under the action of a force having a potential,

The system of curvilinear orthogonal coordinates on the surface is taken so
that the trajectory of the point coincides with one of the coordinate lines. Like
Thompson and Tait, Joukovsky sets up the equation of the trajectory cf the disturb-
ed motion on the basis of the principle of minimal action, the principle being
presented in the Jacobi form. Retaining only the terms of the first order of small-
ness and introducing new variables, the author reduces the differential equation
of the trajectory of disturbed motion to a linear equation of the second order. This
equation may be understood as the equation of the motion of a representative point
along a straight line under the action of a force proportional to the distance of the
point from the origin of the coordinates and under the action of some other constant
force. Joukovsky shows that the function which is the coefficient of proportion-
ality in the expression for the force acting on the representative point is independ-
ent of the choice oforthogonal coordinatcs. He introduces a quantity related to
this coefficient, and calls this quantity the measure of stability. The measure is
also dependent upon the curvature of the surface. The introduction of this quantity
is justified to a certain extent by the fact that the value of the quantity must be
greater than zero for the motion of a point to be stable in the case of a very large
group of types of motion. The motion will be the more stable the greater the func-
tion. Joukovsky calls that moticn stable in which the distance between the trajec-
tory of the disturbed motion and the trajectory of the given motion remains small.

This investigation was later carried further in Joukovsky's Corditions of
Finity of Integrals of Equation d*y[dz*+ py=013%11 (1892) and expanded by Lia-
pounoff in Probléme général de la stabilité du mouvement'—analyses of the case not
considered in the first work, when the coefficient of proportionality in the expres-
sion for the force moving the representative point is a pericdic function.

The first chapter ends with a number of examples of stability of motion of a
point in a plane, including moticn under the action of a central force, motion caus-
ed by the attraction of two centres according to Newton’s law; as well as motion
of a heavy point on the surface of a cone with an inclined axis, motion over a sur-
face of revolution with a vertical axis, and motion by inertia over an arbitrary
surface. Finally the author shows that the meeasure of stability is equal to the sphe-
rical excess of an infinitesimal triangle formed by three lrajectories, divided by the
area of the triangle.

Chapter two deals with the stability of motion of a point with two degrecs
of freedom. The problem is directly reduced to the problem of the first chaptm’_
the author giving examples.

Chapter three is an investigation of the stability of motion of a system. In
it Joukovsky relates the system to an orthogonal system of coordinates in a multi-
dimensional space in such a way that the trajectory coincides with one of the
coordinate lines. By means of a number of transformations the problem is reduced

P A. M. JIanynos, Ofigas sagava o6 ycrolisnsocri Amaenis. Xapouon. 1892, A. M. Lia-
pounov. Problé¢me général.., Annales de Toulouse. S. 2. J. IX. 1907,
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Lo asystem of linear differential equations of thesecond order, of the same type a
in chapter one. Here too the motion of the system will be stable if the (,OOHI(,](‘IILb
of proportionality, like those in chapter one, are positive; and unstable if some
of these coefficients are negative. The general equations arc applied to the motion
of a free material point, as illustrated by two examples. The first is an investiga-
‘tion of stability of motion of a point along a cirele under the attraction of forces
proportional to the n’th power of the distance to two centres on aline drawn throngh
the centre of the circle at right angles to its plane. The second example treats of
stability of motion of a point along an ellipse, caused by Newtonian attraction
to two cenires.

The final chapter deals with the very important problem of stability of steady
motions, whose equations of disturbed motion have constant coefficients. The
problem is reduced to a system of linear differential equations of the second order
with constant coefficients, and is further reduced to the investigation of the roots
of a determinant. If all of the roots arereal and negative the motion will be stable.
This property of the roots depends upon whether a certain quadratic form is always
positive. This result was earlier obtained by Routh in another way.

As he does throughout his work, Joukovsky takes one of the coordinates as
an independent variable,so that time is a function of this coordinate.The inves-
tigation of the change of time for the motion along the trajectory in the theory
of stable motion leads to the same conclusions as formerly: any conservative
disturbance produces an infinitesimal change of time.in a stable steady motion;
and an infinite change in case of non-conservative disturbance. As an example,
Joukovsky examines the stability of motion of a heavy top spinning on a plane
and the stability of motion of three material points acting on each other with a
force proportional to any power of the distance between them. The latter problem
is considered in the two cases when the points remain at the vertices of an equila-
teral triangle, and when they are located on a straight line. foukovsky’s analysis
of the first case is somewhat simpler than that of Routh, which appeared earlier.
The second case was investigated by Liouville for the Newton law. Joukovsky
takes up the case of any power in the expression for the force. He finds that motion
is always unstable in case of a negative power in the expression for the force; in
case of a positive power, the motion may be stable.

Joukovsky's Geometrical Interpretation of the Case of Motion of a Solid About
alixed Point Treated by Sofia Kovalevskaya "1 (1896), is among the most profound
investigations in analytical mechanics. The interpretation is based on the geomet-
rical significance of the twophyper-elliptic integrals in terms of which Kovalevskaya
expresses all the quantities determining the position of the solid. Joukovsky intro-
duces. a system of carvilinear isothermic coordinates connected with two hyper-
elliptic integrals, and shows that these variables may Le expressed in hyper-elliptic
functions of time. This enables him to arrive at the Kovalevskaya theorems. In
his analysis Joukovsky employs the properties of motion of the end of the projec-
tion of the angular velocity in the plane of equal radii of gyration, the motion being
determined in the system of coordinates spoken of above. Employing this motion,
the motion may be found in thesolid of a point on a vertical line at unit distance
from the fixed point. This yields the locus of the verticals in the solid, which
Joukovsky calls the cone of the verticals.
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He then proceedg to the next geometrical interpretation of the motion. In the
Kovalevskaya motionof the solid, the cone of the vertical slides over the vertical
passing through thefixed point in accordance with alaw for the motion of the end of
the projection of equalradiiof gyration, while the plane defined by the vertical and
a point on the axis of the ellipsoid of gyration corresponding to an unequal moment
of inertia at unit distance from the fixed point revolves about this vertical with a
definite angular velocity. The expression for this velocity is given by the author.

Joukovsky is the author of an elegant geometrical investigation The Hess
Loxodromic Pendulum!-11 (1893). This is a geometrical interpretation of the Hess
case of rotation of a solid about a lixed point, obtained when the centre of gravity
of the solid lies on the perpendicular drawn from the point of support to the plane
of the circular cross-section of the gyration ellipsoid, and the principal mement
of momentum at the initial moment lies in the plane of that circular section.
Joukovsky gives a description of a pendulum which he constructed, to illustrate
the motion of a solid in the Hess case.

Joukovsky gives a geometrical explanation of the discrepancy in the methods
employed by Jacobi and Hamilton, in his Characteristic Functions of Jacobi and
Hamilton 1511 (1883).

In his proof of Hamilton’s theorem,which makes it possible to find the integrals
of the differential equations of motion by means of the characteristic function, Jacobi
demonstrated that the function need satisfy only one of the equations, and that there
is no need of a second equation, as in Hamilton’s proof. Joukovsky shows that
Hamilton’s method of prool may be employed to deduce Jacobi’sform of his theorem.

An interesting work in the field is his Determination of the Potential Func-
tion for a Given Family of Trajectories'**-11 (1890). By means of the centripetal force
formula for motion along a surface and in space, Joukovsky determines the poten-
tial function for which a material point acted on by foreces characterised by the
function will describe the given family of trajectories on the given surface. His
results, in the form of a theorem, are included in such classic courses in mechanics
as E. T. Whittaker’s well known T'reatise on the Analyticel Dynamics of Particles
and Rigid Bodies.

The work Relation Between the Problem of Motion of a Material Point and
That of Equilibrium of a Flexible Cord 311 (1879) is one of those studies which at
the very outset of his scientific activity characterise the work of Joukovsky,
who often found analogics between widely differing phenomena in mechanics.
Here the differential equations of motion of a material point are transferred into
the equations of equilibrium of a cord acted upon by forces having a force function,
by means of special substitutions.

In 1911, Joukovsky published an important work Reduction of the Dynamic
Problem of a Kinematic Chain to the Problem of a Leverl125,11, In it he gives a method
of solving various dynamic problems of the kinematic chain with one degree of
freedom, by reducing them to problems of a lever in the form of a rigid frame
having the shape of Mohr’s diagram of velocities and supported at the pole.

The paper opens with instructions for drawing up the velocity diagram and
the diagram of centripetal forces to determine the velocities and accelerations of
points in a kinematic chain. Examples are given of the construction of diagrams
and the solution of a number of velocity and acceleration problems.
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The auxiliary lever of the kinematic chain is then introduced, the term being
applied to a statically determinate frame having the shape ¢f the diagram of the
velocities of the chain obtained when the angular velocity of a “main link’’ is equal
to unity. The dynamic relationship between the auxiliary levers and the kinematic
chain is expressed by the following basic theorem:

The condition of equilibrium of a kinematic chain subjected to forces may
be replaced by corresponding conditions of an auxiliary lever subjected to equal
and parallel forces applied at corresponding points. Simultaneously, the elastic
forces in the chain links will be equal to those in the corresponding elements of the
auxiliary lever.

The general theory is illustrated by a number of examples, among them the
calculation of the period of small oscillations of a kinematic chain and the deter-
mination of the length of a mathematical pendulum equivalent to this chain; deter-
mination of the elastic forces in a moving kinematic chain, in the presence of for-
ces of friction; and calculation of {rictional loss in the hinge of a chain.

Joukovsky made significant contributions to methods of solution of problems
in applied mechanics. Illustrative of such applied investigations is Conditions
of Equilibrium of a Solid Lying Flat on a Fized Plane and Free to Move over this
Plane with F'riction!™11 (1897). In it, Joukovsky proves a number of theorems relat-
ing to friction forces developed by rotation of a solid about a centre.

Joukovsky defines the point where the friction forces are reduced to a torque
as the pole of friction; and the locus of these centres of rotation, for which the
resultant moment of all the forces of friction is constant, as the line of equal
moments.

The first theorem states that the resultant of the friction forces is parallel to
the tangent at the centre of rotation to that line of equal moments which passes
through the centre of rotation; and is equal to the derivative of the moment
of friction along the normal to the line of equal moments.

Theorem two stales that there exists only one pole of friction. The moment
of force of friction is a minimum for this point, which is within the area of contact;
for any other centre of rotation the friction forces have a resultant.

Theorem three states that the moment of forces of friction with respect to any
point for rotations about different centres will be a maximum when the centres
of rotation and the given point coincide.

The theorems yield the following conditions of equilibrium:

The necessary and sufficient condition for the equilibrium of a solid lying
flat on afixed plane is that the force acting on the solid along a line drawn in the
fixed plane should not exceed the force of friction of contact area along the same
line. If there is a torque acting on the solid in the fixed plane, the necessary and
sufficient condition of equilibrium ig that the torque should not exceed that of the
couple of friction forces resulting from the rotation of the contact areca about the
pole of friction. The results obtained by Joukovsky were the starting point of
the development of methods of caleulating friction gears.

In a critical paper Slipping of a Belt on a Drive Wheel (189%), Joukovsky upholds
‘N. P. Petrov’s view on the existence of ranges of the contact arcs along which slip-
ping does not take place, and describes an apparatus which he constructed to de-
monstrate the existence of non-slip ranges. :
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In a short paper onFlat Sijtingl®Viill (1896), Joukovsky suggests a system of
suspension of the sieve consisting of three double cones rolling on conical supports.
He formulates a theory for the motion of the particles in the sieve under the action
of centrifugal forces and friction. He finds the trajectory of motion of the particles
and describes the role of the teeth at the bottom of the sieve.

In a paper entitled Flexible Shajt of a Laval Turbine and Shajts Mounted in
Oscillating Bearings 511 (1899), Joukovsky extends the theory of the turbine shafts
as developed by Féppl and Stewart to the case when the shaft is mounted in oscil-
lating bearings. It is found that mounting the flexible shaft in oscillating
bearings yields approximately the same results as in ordinary mountings,
the stability of motion with oscillating bearings being the greater, the more the
angular velocity exceeds the critical angular velocity.

Joukovsky’s Strengthof a Bicycle Wheel 19V1111 (1902) is astudy of a wheel with
a large number of thin spokes, radial pressure alone being applied to the rim of the
wheel, and extension or compression forces to the spokes. The problem is simplified
by the assumption that pressure of the spokes is uniformly distributed over the rim,
and in each element of length proportionally to the change in radius of the rim axis.
Applying the equilibrium conditions for a thin curved beam, the author reduces
the problem to two simultaneous differential equations of the second and fourth
order for the increments of radius and the increments in the centre angle of the
points of the axis of the rim. The equation of the fourth order is the ordinary linear
differential equation with constant coefficients, and is integrated directly, yield-
ing the expressions for the increments in the radius. This makes integrating the
second equation containing the increments of the angle a simple matter. In inter-
preting the results, Joukovsky simplifies the formulae somewhat, by neglecting
some of the smaller magnitudes entering into the expressions. Joukovsky concludes
that the length of the spokes undergoes periodic change, the changes damping ra-
pidly from the shortest point at contact with the earth and rising along the circum-
ference of the wheel.

The great variety of Joukovsky's works in the field of technical mechan-
ics includes, for example, studies in Pressure Exerted by a Piston on the Cylinder
of Gnome Motors 1120,VIll] (1911), Vibrations of a Locomotive on Shock-Absorbing
Springsl169, VIl (1937), Dynamics of the Automobile [156.VIITI (1923), Action of Coup-
lings in Motion of a Train from Rest 1151,Vi11l (1919). Limitation of space does not
permit a discussion here of these interesting studies.

Limitation of space as well does not permit a detailed description of Joukov-
sky's work in astronomy, among which we find such interesting studies as Simp-
lified Exposition of Gauss' Method of Determining Planet Orbits[i8:11(1883), giving
a concise exposition of Gauss’ method based on geometrical considerations appre-
ciably simplifying the theory; Graphical Solution of the Fundamental Equation in
the Calculation of Planetary Orbits120.X1(1883), giving a graphical solution of
an equation of the eighth order in the theory of determination of orbits, for the
case when the time interval belween observations is small. Another interésting
work in the field is A Proof of Lambert’s T heorem 125.1X1(1884), Joukovsky's proof
is based on the variation of action for an infinitesimal variation of orbit. In Con-
struction of Syndynamical and Synchronic Curves [21.1V] (1884) Joukovsky deduces
formulae for the construction of curves in the theory of comet tails, which Bre-
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dikhin who introduced them called syndynamical and synchronic curves. Joukov-
sky gives formulae for the construction based both on the approximate and the
exact methods. InSolution of a Problem in the Comet T heory!23.1X)(1884%) Joukovsky
determines the change in the geocentric position of particles in the comet tail
expelled from the nucleus at a given previous time by a repulsive force, for an in-
finitesimal change in the force.

3. Aerodynamiecs

The work of Joukovsky in aerodynamics reflects the entire development of
the science of aviation; in many cases, his work formed the basis for important
steps forward in the field. The present review therefore preserves chronological
order throughout, including works which may for some be of purely historical in-
terest.

The first of Joukovsky's studies in the field, entitled On the Flight T heory 15°-¥1]
appeared as far back as 1890, It is a discussion of the crigin of the propulsive force
acting on a body immersed in a fluid, considering that the body can develop only
equal and opposite internal forces. Joukovsky proves that in the absence of frie-
tion the propulsive force in a perfect fluid can arise only owing to a change in the
motion of the fluid, and that the total work throughout a period of the change
is equal to zero. That absence of circulation must be introduced into the above
formulation was later established by Joukovsky himself. Joukovsky goes on
to show that the formation of both free stream lines and friction may account for
the appearance of lift force. The conclusion that Joukovsky draws from this first
attempt is an interesting step in the development of scientific thought. For here
Joukovsky agrees with Brillouin that there can hardly be any basis for assuming
the existence of free stream lines stretching out behind the body to infinity, and
that their forming closed contours behind the body may produce only a zero pres-
sure, Joukovsky holds the view that the origin of the propulsive force must be
sought in friction between the body and the fluid.

Later Joukovsky himself proved that one of the chief sources of the lift force
lies in the bound vortices which exist as well in perfect fluids; that the significance
of friction is not so large that it cannot in great part be neglected.

In his work Soaring of Birdslis:V1(1891) Joukovsky carries out a theorelical
study of gliding, that is, the type of flight in which the bird’s wings do not flap.
He shows that there may be two types of soaring, in which the bird loscs altitude
or slides through the air, and when the bird maintains its altitude or gains in alti-
tude. In the preliminary discussion of existing theories, Joukovsky points out a
number of points lacking inclarity and contradictory. In the main section of the
work he discusses soaring of birds in still air and the influence on such flight of
motion of air flowing in horizontal layers at differing speeds, gusts of wind and
wind blowing with a slightly upward motion . Joukovsky treats the bird as a thin
plate, and sets up differential equations of the motion of the bird’s centre of gra-
vity when its path is a flat curve and when it is a spatial curve. The study of the
curves explains a number of phenomena noted by observers of the flight of birds.

In a short paper T'he Most Efjicient Incidence of a Wingl?tX1(1897) Joukoveky
shows how the observations of Otto Lilienthal in air resistance may be ecmployed
in solving the problem. A simple geometrical study based on the Lilienthal curve
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proves that the most efficient incidence, i. e., the angle for which the work done
in horizontal transiation will be a minimum is approximately 15 degrees. However,
in the work Joukovsky does not discuss the influence of the other parts of the plane
and the deformation of the wings.

The next step in the development of Joukovsky’s conceptions of the forcse
acting on a body in flight may be seen in his classic work On Bound Voriices, of
which he spoke at the Moscow Mathematical Society in 1905, and which was publi-
shed in the following year. Published in the same year was the related work Fal-
ling Through the Air of Light Elongated Bodies Rotating about their Longitudinal
Azes. Here Joukovsky speaks for the first time of the possibility of circulation
arising due to the rotation of the body. It was not until four years later, in 1910,
that the true cause of circulation was found. This part of the problem was carried
out in collaboration with Joukovsky's pupil, Chaplygin, who succeeded in {inding
the wing shape round which circulation will arise; and the two scientists could
then proceed to the calculation of the lift force and moment depending on the inci-
dence. This then was the long and difficult path leading to the formulation of the
famous Joukovsky—Chaplygin postulate, which may be said to have merked the
inception of aerodynamics as an independent science.

A most important work? in the field of aerodynamics is Geometrical Investi-
gation of the Kutta Flowl125:V1(1910, 1911). At the beginning of the wark Joukovsky
speaks of the investigation of Kutta (1902), who found the stream function for the
non-vortex two-dimensional flow of an incompressible fluid about an arc of
a circle and having a velocity at infinity directed along the chord of the arc. Joukov-
sky goes on to Chaplygin’s method (1902) of determining a non-vortex two-dimen-
sional flow about certain contours, among them the Kutta case. Joukovsky speaks
of the explanation of the lift force as arising due to vortex filaments suggested
by Lanchester (1907), who, however, did not give the magnitude or the direction
of the pressure. Joukovsky then quotes his theorem (1906) for the pressure exerted
by a non-vortex flow having a velocity at infinity, on a contour arcund which
‘there is a circulation. The direction of this pressure is obtained by rotating the
velocity vector through ninety degrees in a direction counter to the circulation.
Employing this theorem he proves both the Kutta and the Chaplygin formulae
and extends the results Lo a rectilinear plate. He discusses contours whose shape
approaches the curved and rectilinear wing with a widening at the front end.

Joukovsky then goes on to preve the very important theorem that in confor-
mal transformations of a stream flowing about a contour there is no change in
the magnitude of the circulation about the contour enclosing the original shape.

This is followed by asimple and elegant geometrical exposition, based on Chap-
lyvgin’s formula, of how the entire area of a plane external to a circular arc-shaped
aperture may be conformally represented on the entire area of another plane exter-
nal to a circular aperture in the plane. He employs another conformal representation
for a plane with a rectangular finite aperture on another plane with a circular aper-
ture. Joukovsky applies his method to the construction of various profiles, and to
the profile now well known as the Joukovsky wing.

'Extracts from fthis work were published as Geometrische Unlersuchugen tber dic
Kultta’sche Stromuang by Joukovsky in Zeilschrift fir Flugtechnik und Malorluftschiffahrl
in 1910 (Heft 22) and in 1912 (Heft 6).
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Joukovsky returns to these questions in two works, Caleulation of the Pressure
of a Two-Dimensional Flow on a Contour of which a Segment of a Straight Line
is the Limitl1?*.V)(1911); and Lijting Planes of the Antoinette Type[130:V](1912). He
bases his investigation on Chaplygin’s convenient formula for theresultant moment
of pressure on a contour and applies the results to determining the lift force and
centre of pressure of the Joukovsky wing and a number of other aerofoils, among
them the profile which Joukovsky calls the Antoinette type and which was later
discussed by Karman and Trefftz in 1917.

We are indebted to Joukovsky for great achievements in another basic problem
of the theory of flight—the propulsive force of the propeller. The problem is not
new in hydrodynamics, related as it is to the propulsive force developed by ships’
screws. Joukovsky at various times studied aspects ¢f the question in early works,
On Winged Propellersi$®-Y1(1898), On the Efficiency of the Helicopterl!©t:V1(1904)
and Theory of a Screw with Numerous Bladesi108:¥11(1907). However, his greatest
contribution in the field is his hydrodynamic theory of the propeller. In four
papers, entitled Vortex Theory of the Propeller,129:¥11 (1912, 1914, 1915, 1918), he
evolves an entirely new theory of propellers, containing the theoretical bases for
the study of all problems connected with the designing of propellers. It is of inte-
rest to note that the Joukovsky theory of the propeller, as well as Prandtl’s theory
of the finite wing were made possible by Joukovsky’s investigations of l1ift force,
both theories being the natural outcome of the famous Joukovsky theorem.

However, the step from the theory of the wing to the theory of the propeller
was no ecasy task. Joukovsky’s theoretical results are based on numerous preliminary
experiments, His work in the field enabled him to determine the efficient shape
of the propeller, compute all its elements and to construct the propeller, which
came to be called the NEJ propeller (the initials of Joukovsky’s name). Experi-
ment proved the correctness of the theoretical calculations and NEJ propellers
have been used in practice. The basic results of Joukovsky’s vortex theory of the
propeller may be found today in any textbook on the subject.

Joukovsky’s interests, particularly in later years, embraced almost every branch
of engineering connected with aviation. In Investigation of the Stability of Struc-
tural Partsof Airplanesit48.¥il1(1918), he discusses the stability of thin bars. Joukov-
sky was one of the first to draw attention to the importance of wind tunnel pro-
blems in Entrance Cones and Diffusers of Wind Tunnels, in which he speaks of the
importance of determining the shape of diffusers which will not distert the streams,
Joukovsky was, moreover, the first to speak of the acrodynamic efficiency of the
wind tunnel. In Bombing Practicel'i:V (1916) he gives elements of the theory of
sighting apparatus. He studied questions of gas dynamics, among them An Analogy
hetween the Motion of Heavy Liquid in a Narrow Channel and the High Velocity
Motion of Ges in a PipcllSONUI(1925), Moicon of an Air Wave with Supersonic
Veloerty155:V11 (1920).

Throughout the remarkable variety of his researches, Joukovsky was the true
pioneer and investigator. In the complex phenomena of nature he sought and found
the action of basic laws, calculated their effects and indicated the path leading
to their application in practice,



