Journal of Applied Mathematics and Mechanics (about journal) Journal of Applied
Mathematics and Mechanics

Russian Academy of Sciences
 Founded
in January 1936
(Translated from 1958)
Issued 6 times a year
ISSN 0021-8928
(print version)

Russian  English English About Journal | Issues | Editorial Board | Contact Us
 


 Web hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2013-2pp.137-144

Archive of Issues

Total articles in the database: 1813
In Russian (): 1014
In English (J. Appl. Math. Mech.): 799

<< Previous article | Volume 77, Issue 2 / 2013 | Next article >>
A.P. Markeyev, "Approximate equations of rotational motion of a rigid body carrying a movable point mass," J. Appl. Math. Mech. 77 (2), 137-144 (2013)
Year 2013 Volume 77 Issue 2 Pages 137-144
Title Approximate equations of rotational motion of a rigid body carrying a movable point mass
Author(s) A.P. Markeyev (Moscow, Russia, markeev@ipmnet.ru)
Abstract The dynamics of a compound system, consisting of a rigid body and a point mass, which moves in a specified way along a curve, rigidly attached to the body is investigated. The system performs free motion in a uniform gravity field. Differential equations are derived which describe the rotation of the body about its centre of mass. In two special cases, which allow of the introduction of a small parameter, an approximate system of equations of motion is obtained using asymptotic methods. The accuracy with which the solutions of the approximate system approach the solutions of the exact equations of motion is indicated. In one case, it is assumed that the point mass has a mass that is small compared with the mass of the body, and performs rapid motion with respect to the rigid body. It is shown that in this case the approximate system is integrable. A number of special motions of the body, described by the approximate system, are indicated, and their stability is investigated. In the second case, no limitations are imposed on the mass of the point mass, but it is assumed that the relative motion of the point is rapid and occurs near a specified point of the body. It is shown that, in the approximate system, the motion of the rigid body about its centre of mass is Euler-Poinsot motion.
Received 18 June 2012
Link to Fulltext http://www.sciencedirect.com/science/article/pii/S0021892813000762
<< Previous article | Volume 77, Issue 2 / 2013 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 245, 119526 Moscow, Russia (+7 495) 434-2149 pmm@ipmnet.ru pmmedit@ipmnet.ru http://pmm.ipmnet.ru
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Journals on Mechanics Ltd.
© Journals on Mechanics Ltd.
Webmaster: Alexander Levitin
Rambler's Top100