Journal of Applied Mathematics and Mechanics (about journal) Journal of Applied
Mathematics and Mechanics

Russian Academy of Sciences
in January 1936
(Translated from 1958)
Issued 6 times a year
ISSN 0021-8928
(print version)

Russian  English English About Journal | Issues | Editorial Board | Contact Us

 Web hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2011-1pp.19-26

Archive of Issues

Total articles in the database: 1813
In Russian (): 1014
In English (J. Appl. Math. Mech.): 799

<< Previous article | Volume 75, Issue 1 / 2011 | Next article >>
A.G. Kulikovskii and E.I. Sveshnikova, "Near-resonace transverse oscillations in an elastic layer. Steady-state solutions," J. Appl. Math. Mech. 75 (1), 19-26 (2011)
Year 2011 Volume 75 Issue 1 Pages 19-26
Title Near-resonace transverse oscillations in an elastic layer. Steady-state solutions
Author(s) A.G. Kulikovskii (Moscow, Russia,
E.I. Sveshnikova (Moscow, Russia)
Abstract The solutions of the equations of the non-linear evolution of transverse oscillations in a layer of an incompressible elastic medium under conditions close to resonance conditions are investigated qualitatively and using analytical methods. The oscillations are created by a small periodic motion of one of the boundaries in its plane, with a period that is close to the period of the natural oscillations of the layer. It is assumed that the medium can possess slight anisotropy and that the amplitude of the oscillations which arise is small. Previously obtained differential equations are used, which describe the slow evolution of the wave pattern of non-linear transverse waves. Two possible formulations of problems for these equations are considered. In the first formulation, it is determined what the external action must be in order that the non-linear evolution of oscillations or periodic oscillations occurs according to a (previously specified) desired law. In the second formulation it is assumed that the periodic motion of one of the boundaries is given. It is shown that a steady-state solution, that does not vary from period to period, can be represented by a continuous solution and also by a solution which contains discontinuities in the strain and velocity components. The mechanism of the overturn of a non-linear wave during its evolution and the formation of a discontinuity are qualitatively described.
Received 3 December 2009
Link to Fulltext
<< Previous article | Volume 75, Issue 1 / 2011 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 245, 119526 Moscow, Russia (+7 495) 434-2149
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Journals on Mechanics Ltd.
© Journals on Mechanics Ltd.
Webmaster: Alexander Levitin
Rambler's Top100